Islem Bouzid, R. Côte, T. Fakhfakh, M. Haddar, Pierre-Olivier Mattei
{"title":"非线性振动声吸收器在线性和非线性强迫状态下与声系统耦合的简化2自由度模型的参数辨识","authors":"Islem Bouzid, R. Côte, T. Fakhfakh, M. Haddar, Pierre-Olivier Mattei","doi":"10.1051/aacus/2022056","DOIUrl":null,"url":null,"abstract":"This article presents a method for identifying the parameters of a simplified 2 degree of freedom model representative of a linear primary system coupled to a non-linear absorber in a forced harmonic regime over a wide range of amplitudes and forcing frequencies covering different dynamical regimes. This is a priori a difficult operation because it is necessary to combine two apparently contradictory steps. The first step consists in establishing models representing the physics of the system which are analytically soluble, which imposes severe approximations. The second step consists in adjusting the parameters of the models to experimental data, which reveal some phenomena ignored by the models. To do so, two approximate analytic methods, Harmonic Balance and Complexification Averaging under 1:1 resonance, are used to describe the dynamics of the nonlinear system for its different operating regimes: linear behavior, nonlinear behavior without energy pumping, energy pumping, and saturation regime. Then, using a non-linear regression, the parameters of the simplified model are identified from experiments. The values obtained correspond to the expected physical quantities.","PeriodicalId":48486,"journal":{"name":"Acta Acustica","volume":"12 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of the parameters of a simplified 2 degree of freedom model of a nonlinear vibroacoustic absorber coupled to an acoustic system in linear and nonlinear forced regimes\",\"authors\":\"Islem Bouzid, R. Côte, T. Fakhfakh, M. Haddar, Pierre-Olivier Mattei\",\"doi\":\"10.1051/aacus/2022056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a method for identifying the parameters of a simplified 2 degree of freedom model representative of a linear primary system coupled to a non-linear absorber in a forced harmonic regime over a wide range of amplitudes and forcing frequencies covering different dynamical regimes. This is a priori a difficult operation because it is necessary to combine two apparently contradictory steps. The first step consists in establishing models representing the physics of the system which are analytically soluble, which imposes severe approximations. The second step consists in adjusting the parameters of the models to experimental data, which reveal some phenomena ignored by the models. To do so, two approximate analytic methods, Harmonic Balance and Complexification Averaging under 1:1 resonance, are used to describe the dynamics of the nonlinear system for its different operating regimes: linear behavior, nonlinear behavior without energy pumping, energy pumping, and saturation regime. Then, using a non-linear regression, the parameters of the simplified model are identified from experiments. The values obtained correspond to the expected physical quantities.\",\"PeriodicalId\":48486,\"journal\":{\"name\":\"Acta Acustica\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Acustica\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1051/aacus/2022056\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Acustica","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/aacus/2022056","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
Identification of the parameters of a simplified 2 degree of freedom model of a nonlinear vibroacoustic absorber coupled to an acoustic system in linear and nonlinear forced regimes
This article presents a method for identifying the parameters of a simplified 2 degree of freedom model representative of a linear primary system coupled to a non-linear absorber in a forced harmonic regime over a wide range of amplitudes and forcing frequencies covering different dynamical regimes. This is a priori a difficult operation because it is necessary to combine two apparently contradictory steps. The first step consists in establishing models representing the physics of the system which are analytically soluble, which imposes severe approximations. The second step consists in adjusting the parameters of the models to experimental data, which reveal some phenomena ignored by the models. To do so, two approximate analytic methods, Harmonic Balance and Complexification Averaging under 1:1 resonance, are used to describe the dynamics of the nonlinear system for its different operating regimes: linear behavior, nonlinear behavior without energy pumping, energy pumping, and saturation regime. Then, using a non-linear regression, the parameters of the simplified model are identified from experiments. The values obtained correspond to the expected physical quantities.
期刊介绍:
Acta Acustica, the Journal of the European Acoustics Association (EAA).
After the publication of its Journal Acta Acustica from 1993 to 1995, the EAA published Acta Acustica united with Acustica from 1996 to 2019. From 2020, the EAA decided to publish a journal in full Open Access. See Article Processing charges.
Acta Acustica reports on original scientific research in acoustics and on engineering applications. The journal considers review papers, scientific papers, technical and applied papers, short communications, letters to the editor. From time to time, special issues and review articles are also published. For book reviews or doctoral thesis abstracts, please contact the Editor in Chief.