{"title":"具有退化粘度和真空的Vlasov/Navier-Stokes方程的正则解和奇点形成","authors":"Young-Pil Choi, Jinwook Jung","doi":"10.3934/krm.2022016","DOIUrl":null,"url":null,"abstract":"We analyze the Vlasov equation coupled with the compressible Navier–Stokes equations with degenerate viscosities and vacuum. These two equations are coupled through the drag force which depends on the fluid density and the relative velocity between particle and fluid. We first establish the existence and uniqueness of local-in-time regular solutions with arbitrarily large initial data and a vacuum. We then present sufficient conditions on the initial data leading to the finite-time blowup of regular solutions. In particular, our study makes the result on the finite-time singularity formation for Vlasov/Navier–Stokes equations discussed by Choi [J. Math. Pures Appl., 108, (2017), 991–1021] completely rigorous.","PeriodicalId":49942,"journal":{"name":"Kinetic and Related Models","volume":"26 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On regular solutions and singularity formation for Vlasov/Navier-Stokes equations with degenerate viscosities and vacuum\",\"authors\":\"Young-Pil Choi, Jinwook Jung\",\"doi\":\"10.3934/krm.2022016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyze the Vlasov equation coupled with the compressible Navier–Stokes equations with degenerate viscosities and vacuum. These two equations are coupled through the drag force which depends on the fluid density and the relative velocity between particle and fluid. We first establish the existence and uniqueness of local-in-time regular solutions with arbitrarily large initial data and a vacuum. We then present sufficient conditions on the initial data leading to the finite-time blowup of regular solutions. In particular, our study makes the result on the finite-time singularity formation for Vlasov/Navier–Stokes equations discussed by Choi [J. Math. Pures Appl., 108, (2017), 991–1021] completely rigorous.\",\"PeriodicalId\":49942,\"journal\":{\"name\":\"Kinetic and Related Models\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kinetic and Related Models\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/krm.2022016\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kinetic and Related Models","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/krm.2022016","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On regular solutions and singularity formation for Vlasov/Navier-Stokes equations with degenerate viscosities and vacuum
We analyze the Vlasov equation coupled with the compressible Navier–Stokes equations with degenerate viscosities and vacuum. These two equations are coupled through the drag force which depends on the fluid density and the relative velocity between particle and fluid. We first establish the existence and uniqueness of local-in-time regular solutions with arbitrarily large initial data and a vacuum. We then present sufficient conditions on the initial data leading to the finite-time blowup of regular solutions. In particular, our study makes the result on the finite-time singularity formation for Vlasov/Navier–Stokes equations discussed by Choi [J. Math. Pures Appl., 108, (2017), 991–1021] completely rigorous.
期刊介绍:
KRM publishes high quality papers of original research in the areas of kinetic equations spanning from mathematical theory to numerical analysis, simulations and modelling. It includes studies on models arising from physics, engineering, finance, biology, human and social sciences, together with their related fields such as fluid models, interacting particle systems and quantum systems. A more detailed indication of its scope is given by the subject interests of the members of the Board of Editors. Invited expository articles are also published from time to time.