大规模激光雷达点云多尺度特征提取与语义分类的分布式系统

Satendra Singh, Jaya Sreevalsan-Nair
{"title":"大规模激光雷达点云多尺度特征提取与语义分类的分布式系统","authors":"Satendra Singh, Jaya Sreevalsan-Nair","doi":"10.1109/InGARSS48198.2020.9358938","DOIUrl":null,"url":null,"abstract":"Managing and processing large-scale point clouds are much needed for the exploration and contextual understanding of the data. Hence, we explore the use of a widely used big data analytics framework, Apache Spark, in distributed systems for large-scale point cloud processing. To effectively use Spark, we propose to use its integration with Cassandra for persistent storage, and to appropriately partition the point cloud across the nodes in the distributed system. We use this integrated framework for multiscale feature extraction and semantic classification using random forest classifier. We have shown the efficacy of our proposed application through our results in the DALES aerial LiDAR point cloud.","PeriodicalId":6797,"journal":{"name":"2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS)","volume":"296 1","pages":"74-77"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Distributed System for Multiscale Feature Extraction and Semantic Classification of Large-Scale Lidar Point Clouds\",\"authors\":\"Satendra Singh, Jaya Sreevalsan-Nair\",\"doi\":\"10.1109/InGARSS48198.2020.9358938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Managing and processing large-scale point clouds are much needed for the exploration and contextual understanding of the data. Hence, we explore the use of a widely used big data analytics framework, Apache Spark, in distributed systems for large-scale point cloud processing. To effectively use Spark, we propose to use its integration with Cassandra for persistent storage, and to appropriately partition the point cloud across the nodes in the distributed system. We use this integrated framework for multiscale feature extraction and semantic classification using random forest classifier. We have shown the efficacy of our proposed application through our results in the DALES aerial LiDAR point cloud.\",\"PeriodicalId\":6797,\"journal\":{\"name\":\"2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS)\",\"volume\":\"296 1\",\"pages\":\"74-77\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/InGARSS48198.2020.9358938\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/InGARSS48198.2020.9358938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

管理和处理大规模点云对于数据的探索和上下文理解是非常必要的。因此,我们探索了在分布式系统中使用广泛使用的大数据分析框架Apache Spark进行大规模点云处理。为了有效地使用Spark,我们建议使用它与Cassandra的集成来进行持久存储,并在分布式系统中的节点之间适当地划分点云。我们将此集成框架用于多尺度特征提取和随机森林分类器的语义分类。我们已经通过DALES航空激光雷达点云的结果证明了我们提出的应用程序的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Distributed System for Multiscale Feature Extraction and Semantic Classification of Large-Scale Lidar Point Clouds
Managing and processing large-scale point clouds are much needed for the exploration and contextual understanding of the data. Hence, we explore the use of a widely used big data analytics framework, Apache Spark, in distributed systems for large-scale point cloud processing. To effectively use Spark, we propose to use its integration with Cassandra for persistent storage, and to appropriately partition the point cloud across the nodes in the distributed system. We use this integrated framework for multiscale feature extraction and semantic classification using random forest classifier. We have shown the efficacy of our proposed application through our results in the DALES aerial LiDAR point cloud.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信