一种利用频响函数设计多轴振动和耐久性试验台的方法

P. Şendur, Umut Ozcan, Berk Ozoguz
{"title":"一种利用频响函数设计多轴振动和耐久性试验台的方法","authors":"P. Şendur, Umut Ozcan, Berk Ozoguz","doi":"10.1121/2.0000526","DOIUrl":null,"url":null,"abstract":"The multi-axis simulators are designed for experimental verification of the safe functioning of large components and subsystems under real world customer usage in vibration and durability testing. Transformation of the full vehicle conditions to mast rig testing with correct system dynamics and vibration characteristics and boundary conditions is a key challenge in the development of the experimental set-up. In this paper, a systematic methodology is formalized how to design the experimental set-up on MAST rig to replicate the vehicle dynamics and vibration characteristics in vehicle conditions. System modes and frequency response functions are chosen as key performance metrics to compare the dynamics of the system to be tested for both full vehicle and rig design. Criteria on the metrics are defined to make decision if the test rig design is sufficiently replicating the in-vehicle conditions. The methodology is illustrated on a side skirt attached to a heavy duty truck chassis that demonstrates the appli...","PeriodicalId":20469,"journal":{"name":"Proc. Meet. Acoust.","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A methodology to design multi-axis test rigs for vibration and durability testing using frequency response functions\",\"authors\":\"P. Şendur, Umut Ozcan, Berk Ozoguz\",\"doi\":\"10.1121/2.0000526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The multi-axis simulators are designed for experimental verification of the safe functioning of large components and subsystems under real world customer usage in vibration and durability testing. Transformation of the full vehicle conditions to mast rig testing with correct system dynamics and vibration characteristics and boundary conditions is a key challenge in the development of the experimental set-up. In this paper, a systematic methodology is formalized how to design the experimental set-up on MAST rig to replicate the vehicle dynamics and vibration characteristics in vehicle conditions. System modes and frequency response functions are chosen as key performance metrics to compare the dynamics of the system to be tested for both full vehicle and rig design. Criteria on the metrics are defined to make decision if the test rig design is sufficiently replicating the in-vehicle conditions. The methodology is illustrated on a side skirt attached to a heavy duty truck chassis that demonstrates the appli...\",\"PeriodicalId\":20469,\"journal\":{\"name\":\"Proc. Meet. Acoust.\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proc. Meet. Acoust.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1121/2.0000526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proc. Meet. Acoust.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1121/2.0000526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设计多轴模拟器是为了在实际客户使用的振动和耐久性测试中对大型部件和子系统的安全功能进行实验验证。将整车条件转换为具有正确的系统动力学和振动特性以及边界条件的桅杆试验是实验装置开发中的关键挑战。本文系统地阐述了如何在MAST平台上设计模拟车辆动态和振动特性的实验装置。系统模式和频率响应函数被选为关键性能指标,以比较整车和钻机设计中待测系统的动力学。定义了度量标准,以确定试验台设计是否充分复制了车内条件。该方法在重型卡车底盘的侧裙上进行了说明,演示了该方法的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A methodology to design multi-axis test rigs for vibration and durability testing using frequency response functions
The multi-axis simulators are designed for experimental verification of the safe functioning of large components and subsystems under real world customer usage in vibration and durability testing. Transformation of the full vehicle conditions to mast rig testing with correct system dynamics and vibration characteristics and boundary conditions is a key challenge in the development of the experimental set-up. In this paper, a systematic methodology is formalized how to design the experimental set-up on MAST rig to replicate the vehicle dynamics and vibration characteristics in vehicle conditions. System modes and frequency response functions are chosen as key performance metrics to compare the dynamics of the system to be tested for both full vehicle and rig design. Criteria on the metrics are defined to make decision if the test rig design is sufficiently replicating the in-vehicle conditions. The methodology is illustrated on a side skirt attached to a heavy duty truck chassis that demonstrates the appli...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信