液相色谱/质谱技术在日本环境分析中的最新进展。

Q3 Physics and Astronomy
Shigeru Suzuki
{"title":"液相色谱/质谱技术在日本环境分析中的最新进展。","authors":"Shigeru Suzuki","doi":"10.5702/massspectrometry.S0047","DOIUrl":null,"url":null,"abstract":"The techniques and measurement methods developed in the Environmental Survey and Monitoring of Chemicals by Japan's Ministry of the Environment, as well as a large amount of knowledge archived in the survey, have led to the advancement of environmental analysis. Recently, technologies such as non-target liquid chromatography/high resolution mass spectrometry and liquid chromatography with micro bore column have further developed the field. Here, the general strategy of a method developed for the liquid chromatography/mass spectrometry (LC/MS) analysis of environmental chemicals with a brief description is presented. Also, a non-target analysis for the identification of environmental pollutants using a provisional fragment database and \"MsMsFilter,\" an elemental composition elucidation tool, is presented. This analytical method is shown to be highly effective in the identification of a model chemical, the pesticide Bendiocarb. Our improved micro-liquid chromatography injection system showed substantially enhanced sensitivity to perfluoroalkyl substances, with peak areas 32-71 times larger than those observed in conventional LC/MS.","PeriodicalId":18243,"journal":{"name":"Mass spectrometry","volume":"30 1","pages":"S0047"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Recent Advance in Liquid Chromatography/Mass Spectrometry Techniques for Environmental Analysis in Japan.\",\"authors\":\"Shigeru Suzuki\",\"doi\":\"10.5702/massspectrometry.S0047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The techniques and measurement methods developed in the Environmental Survey and Monitoring of Chemicals by Japan's Ministry of the Environment, as well as a large amount of knowledge archived in the survey, have led to the advancement of environmental analysis. Recently, technologies such as non-target liquid chromatography/high resolution mass spectrometry and liquid chromatography with micro bore column have further developed the field. Here, the general strategy of a method developed for the liquid chromatography/mass spectrometry (LC/MS) analysis of environmental chemicals with a brief description is presented. Also, a non-target analysis for the identification of environmental pollutants using a provisional fragment database and \\\"MsMsFilter,\\\" an elemental composition elucidation tool, is presented. This analytical method is shown to be highly effective in the identification of a model chemical, the pesticide Bendiocarb. Our improved micro-liquid chromatography injection system showed substantially enhanced sensitivity to perfluoroalkyl substances, with peak areas 32-71 times larger than those observed in conventional LC/MS.\",\"PeriodicalId\":18243,\"journal\":{\"name\":\"Mass spectrometry\",\"volume\":\"30 1\",\"pages\":\"S0047\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mass spectrometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5702/massspectrometry.S0047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mass spectrometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5702/massspectrometry.S0047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 1

摘要

日本环境省在《化学品环境调查与监测》中开发的技术和测量方法,以及调查中积累的大量知识,推动了环境分析的发展。近年来,非目标液相色谱/高分辨率质谱和微孔柱液相色谱等技术进一步发展了该领域。本文简要介绍了一种用于环境化学物质的液相色谱/质谱(LC/MS)分析方法的总体策略。此外,本文还介绍了使用临时片段数据库和“MsMsFilter”(一种元素成分解析工具)进行环境污染物鉴定的非目标分析。这种分析方法被证明是非常有效的识别一种模式化学品,农药恶虫威。改进后的微液相色谱进样系统对全氟烷基物质的灵敏度显著提高,峰面积是常规LC/MS的32-71倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recent Advance in Liquid Chromatography/Mass Spectrometry Techniques for Environmental Analysis in Japan.
The techniques and measurement methods developed in the Environmental Survey and Monitoring of Chemicals by Japan's Ministry of the Environment, as well as a large amount of knowledge archived in the survey, have led to the advancement of environmental analysis. Recently, technologies such as non-target liquid chromatography/high resolution mass spectrometry and liquid chromatography with micro bore column have further developed the field. Here, the general strategy of a method developed for the liquid chromatography/mass spectrometry (LC/MS) analysis of environmental chemicals with a brief description is presented. Also, a non-target analysis for the identification of environmental pollutants using a provisional fragment database and "MsMsFilter," an elemental composition elucidation tool, is presented. This analytical method is shown to be highly effective in the identification of a model chemical, the pesticide Bendiocarb. Our improved micro-liquid chromatography injection system showed substantially enhanced sensitivity to perfluoroalkyl substances, with peak areas 32-71 times larger than those observed in conventional LC/MS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mass spectrometry
Mass spectrometry Physics and Astronomy-Instrumentation
CiteScore
1.90
自引率
0.00%
发文量
3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信