{"title":"相位检索从傅立叶测量与掩模","authors":"Huiping Li, Song Li","doi":"10.3934/IPI.2021028","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>This paper concerns the problem of phase retrieval from Fourier measurements with random masks. Here we focus on researching two kinds of random masks. Firstly, we utilize the Fourier measurements with real masks to estimate a general signal <inline-formula><tex-math id=\"M1\">\\begin{document}$ \\mathit{\\boldsymbol{x}}_0\\in \\mathbb{R}^d $\\end{document}</tex-math></inline-formula> in noiseless case when <inline-formula><tex-math id=\"M2\">\\begin{document}$ d $\\end{document}</tex-math></inline-formula> is even. It is demonstrated that <inline-formula><tex-math id=\"M3\">\\begin{document}$ O(\\log^2d) $\\end{document}</tex-math></inline-formula> real random masks are able to ensure accurate recovery of <inline-formula><tex-math id=\"M4\">\\begin{document}$ \\mathit{\\boldsymbol{x}}_0 $\\end{document}</tex-math></inline-formula>. Then we find that such real masks are not adaptable to reconstruct complex signals of even dimension. Subsequently, we prove that <inline-formula><tex-math id=\"M5\">\\begin{document}$ O(\\log^4d) $\\end{document}</tex-math></inline-formula> complex masks are enough to stably estimate a general signal <inline-formula><tex-math id=\"M6\">\\begin{document}$ \\mathit{\\boldsymbol{x}}_0\\in \\mathbb{C}^d $\\end{document}</tex-math></inline-formula> under bounded noise interference, which extends E. Candès et al.'s work. Meanwhile, we establish tighter error estimations for real signals of even dimensions or complex signals of odd dimensions by using <inline-formula><tex-math id=\"M7\">\\begin{document}$ O(\\log^2d) $\\end{document}</tex-math></inline-formula> real masks. Finally, we intend to tackle with the noisy phase problem about an <inline-formula><tex-math id=\"M8\">\\begin{document}$ s $\\end{document}</tex-math></inline-formula>-sparse signal by a robust and efficient approach, namely, two-stage algorithm. Based on the stable guarantees for general signals, we show that the <inline-formula><tex-math id=\"M9\">\\begin{document}$ s $\\end{document}</tex-math></inline-formula>-sparse signal <inline-formula><tex-math id=\"M10\">\\begin{document}$ \\mathit{\\boldsymbol{x}}_0 $\\end{document}</tex-math></inline-formula> can be stably recovered from composite measurements under near-optimal sample complexity up to a <inline-formula><tex-math id=\"M11\">\\begin{document}$ \\log $\\end{document}</tex-math></inline-formula> factor, namely, <inline-formula><tex-math id=\"M12\">\\begin{document}$ O(s\\log(\\frac{ed}{s})\\log^4(s\\log(\\frac{ed}{s}))) $\\end{document}</tex-math></inline-formula></p>","PeriodicalId":50274,"journal":{"name":"Inverse Problems and Imaging","volume":"23 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Phase retrieval from Fourier measurements with masks\",\"authors\":\"Huiping Li, Song Li\",\"doi\":\"10.3934/IPI.2021028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>This paper concerns the problem of phase retrieval from Fourier measurements with random masks. Here we focus on researching two kinds of random masks. Firstly, we utilize the Fourier measurements with real masks to estimate a general signal <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ \\\\mathit{\\\\boldsymbol{x}}_0\\\\in \\\\mathbb{R}^d $\\\\end{document}</tex-math></inline-formula> in noiseless case when <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ d $\\\\end{document}</tex-math></inline-formula> is even. It is demonstrated that <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ O(\\\\log^2d) $\\\\end{document}</tex-math></inline-formula> real random masks are able to ensure accurate recovery of <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ \\\\mathit{\\\\boldsymbol{x}}_0 $\\\\end{document}</tex-math></inline-formula>. Then we find that such real masks are not adaptable to reconstruct complex signals of even dimension. Subsequently, we prove that <inline-formula><tex-math id=\\\"M5\\\">\\\\begin{document}$ O(\\\\log^4d) $\\\\end{document}</tex-math></inline-formula> complex masks are enough to stably estimate a general signal <inline-formula><tex-math id=\\\"M6\\\">\\\\begin{document}$ \\\\mathit{\\\\boldsymbol{x}}_0\\\\in \\\\mathbb{C}^d $\\\\end{document}</tex-math></inline-formula> under bounded noise interference, which extends E. Candès et al.'s work. Meanwhile, we establish tighter error estimations for real signals of even dimensions or complex signals of odd dimensions by using <inline-formula><tex-math id=\\\"M7\\\">\\\\begin{document}$ O(\\\\log^2d) $\\\\end{document}</tex-math></inline-formula> real masks. Finally, we intend to tackle with the noisy phase problem about an <inline-formula><tex-math id=\\\"M8\\\">\\\\begin{document}$ s $\\\\end{document}</tex-math></inline-formula>-sparse signal by a robust and efficient approach, namely, two-stage algorithm. Based on the stable guarantees for general signals, we show that the <inline-formula><tex-math id=\\\"M9\\\">\\\\begin{document}$ s $\\\\end{document}</tex-math></inline-formula>-sparse signal <inline-formula><tex-math id=\\\"M10\\\">\\\\begin{document}$ \\\\mathit{\\\\boldsymbol{x}}_0 $\\\\end{document}</tex-math></inline-formula> can be stably recovered from composite measurements under near-optimal sample complexity up to a <inline-formula><tex-math id=\\\"M11\\\">\\\\begin{document}$ \\\\log $\\\\end{document}</tex-math></inline-formula> factor, namely, <inline-formula><tex-math id=\\\"M12\\\">\\\\begin{document}$ O(s\\\\log(\\\\frac{ed}{s})\\\\log^4(s\\\\log(\\\\frac{ed}{s}))) $\\\\end{document}</tex-math></inline-formula></p>\",\"PeriodicalId\":50274,\"journal\":{\"name\":\"Inverse Problems and Imaging\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inverse Problems and Imaging\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/IPI.2021028\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems and Imaging","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/IPI.2021028","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 5
摘要
This paper concerns the problem of phase retrieval from Fourier measurements with random masks. Here we focus on researching two kinds of random masks. Firstly, we utilize the Fourier measurements with real masks to estimate a general signal \begin{document}$ \mathit{\boldsymbol{x}}_0\in \mathbb{R}^d $\end{document} in noiseless case when \begin{document}$ d $\end{document} is even. It is demonstrated that \begin{document}$ O(\log^2d) $\end{document} real random masks are able to ensure accurate recovery of \begin{document}$ \mathit{\boldsymbol{x}}_0 $\end{document}. Then we find that such real masks are not adaptable to reconstruct complex signals of even dimension. Subsequently, we prove that \begin{document}$ O(\log^4d) $\end{document} complex masks are enough to stably estimate a general signal \begin{document}$ \mathit{\boldsymbol{x}}_0\in \mathbb{C}^d $\end{document} under bounded noise interference, which extends E. Candès et al.'s work. Meanwhile, we establish tighter error estimations for real signals of even dimensions or complex signals of odd dimensions by using \begin{document}$ O(\log^2d) $\end{document} real masks. Finally, we intend to tackle with the noisy phase problem about an \begin{document}$ s $\end{document}-sparse signal by a robust and efficient approach, namely, two-stage algorithm. Based on the stable guarantees for general signals, we show that the \begin{document}$ s $\end{document}-sparse signal \begin{document}$ \mathit{\boldsymbol{x}}_0 $\end{document} can be stably recovered from composite measurements under near-optimal sample complexity up to a \begin{document}$ \log $\end{document} factor, namely, \begin{document}$ O(s\log(\frac{ed}{s})\log^4(s\log(\frac{ed}{s}))) $\end{document}
Phase retrieval from Fourier measurements with masks
This paper concerns the problem of phase retrieval from Fourier measurements with random masks. Here we focus on researching two kinds of random masks. Firstly, we utilize the Fourier measurements with real masks to estimate a general signal \begin{document}$ \mathit{\boldsymbol{x}}_0\in \mathbb{R}^d $\end{document} in noiseless case when \begin{document}$ d $\end{document} is even. It is demonstrated that \begin{document}$ O(\log^2d) $\end{document} real random masks are able to ensure accurate recovery of \begin{document}$ \mathit{\boldsymbol{x}}_0 $\end{document}. Then we find that such real masks are not adaptable to reconstruct complex signals of even dimension. Subsequently, we prove that \begin{document}$ O(\log^4d) $\end{document} complex masks are enough to stably estimate a general signal \begin{document}$ \mathit{\boldsymbol{x}}_0\in \mathbb{C}^d $\end{document} under bounded noise interference, which extends E. Candès et al.'s work. Meanwhile, we establish tighter error estimations for real signals of even dimensions or complex signals of odd dimensions by using \begin{document}$ O(\log^2d) $\end{document} real masks. Finally, we intend to tackle with the noisy phase problem about an \begin{document}$ s $\end{document}-sparse signal by a robust and efficient approach, namely, two-stage algorithm. Based on the stable guarantees for general signals, we show that the \begin{document}$ s $\end{document}-sparse signal \begin{document}$ \mathit{\boldsymbol{x}}_0 $\end{document} can be stably recovered from composite measurements under near-optimal sample complexity up to a \begin{document}$ \log $\end{document} factor, namely, \begin{document}$ O(s\log(\frac{ed}{s})\log^4(s\log(\frac{ed}{s}))) $\end{document}
期刊介绍:
Inverse Problems and Imaging publishes research articles of the highest quality that employ innovative mathematical and modeling techniques to study inverse and imaging problems arising in engineering and other sciences. Every published paper has a strong mathematical orientation employing methods from such areas as control theory, discrete mathematics, differential geometry, harmonic analysis, functional analysis, integral geometry, mathematical physics, numerical analysis, optimization, partial differential equations, and stochastic and statistical methods. The field of applications includes medical and other imaging, nondestructive testing, geophysical prospection and remote sensing as well as image analysis and image processing.
This journal is committed to recording important new results in its field and will maintain the highest standards of innovation and quality. To be published in this journal, a paper must be correct, novel, nontrivial and of interest to a substantial number of researchers and readers.