平面图上顶点着色问题的最大独立集的建立

Q3 Computer Science
Cristina López-Ramírez, Jorge Eduardo Gutiérrez Gómez, Guillermo De Ita Luna
{"title":"平面图上顶点着色问题的最大独立集的建立","authors":"Cristina López-Ramírez,&nbsp;Jorge Eduardo Gutiérrez Gómez,&nbsp;Guillermo De Ita Luna","doi":"10.1016/j.entcs.2020.10.007","DOIUrl":null,"url":null,"abstract":"<div><p>We analyze the vertex-coloring problem restricted to planar graphs and propose to consider classic wheels and polyhedral wheels as basic patterns for the planar graphs. We analyze the colorability of the composition among wheels and introduce a novel algorithm based on three rules for the vertex-coloring problem. These rules are: 1) Selecting vertices in the frontier. 2) Processing subsumed wheels. 3) Processing centers of the remaining wheels. Our method forms a maximal independent set <em>S</em><sub>1</sub> ⊂ <em>V</em> (<em>G</em>) consisting of wheel's centers, and a maximum number of vertices in the frontier of the planar graph. Thus, we show that if the resulting graph <em>G</em>′ = (<em>G − S</em><sub>1</sub>) is 3-colorable, then this implies the existence of a valid 4-coloring for <em>G</em>.</p></div>","PeriodicalId":38770,"journal":{"name":"Electronic Notes in Theoretical Computer Science","volume":"354 ","pages":"Pages 75-89"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.entcs.2020.10.007","citationCount":"1","resultStr":"{\"title\":\"Building a Maximal Independent Set for the Vertex-coloring Problem on Planar Graphs\",\"authors\":\"Cristina López-Ramírez,&nbsp;Jorge Eduardo Gutiérrez Gómez,&nbsp;Guillermo De Ita Luna\",\"doi\":\"10.1016/j.entcs.2020.10.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We analyze the vertex-coloring problem restricted to planar graphs and propose to consider classic wheels and polyhedral wheels as basic patterns for the planar graphs. We analyze the colorability of the composition among wheels and introduce a novel algorithm based on three rules for the vertex-coloring problem. These rules are: 1) Selecting vertices in the frontier. 2) Processing subsumed wheels. 3) Processing centers of the remaining wheels. Our method forms a maximal independent set <em>S</em><sub>1</sub> ⊂ <em>V</em> (<em>G</em>) consisting of wheel's centers, and a maximum number of vertices in the frontier of the planar graph. Thus, we show that if the resulting graph <em>G</em>′ = (<em>G − S</em><sub>1</sub>) is 3-colorable, then this implies the existence of a valid 4-coloring for <em>G</em>.</p></div>\",\"PeriodicalId\":38770,\"journal\":{\"name\":\"Electronic Notes in Theoretical Computer Science\",\"volume\":\"354 \",\"pages\":\"Pages 75-89\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.entcs.2020.10.007\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Notes in Theoretical Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1571066120300839\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Notes in Theoretical Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1571066120300839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1

摘要

分析了局限于平面图的顶点着色问题,提出将经典轮和多面体轮作为平面图的基本图案。分析了车轮间构图的可着色性,提出了一种基于三条规则的顶点着色算法。这些规则是:1)选择边界中的顶点。2)加工分体车轮。3)剩余车轮加工中心。我们的方法形成了一个由车轮中心和平面图边界上最大顶点数组成的最大独立集S1∧V (G)。因此,我们证明了如果结果图G ' = (G−S1)是3色的,那么这意味着G存在有效的4色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Building a Maximal Independent Set for the Vertex-coloring Problem on Planar Graphs

We analyze the vertex-coloring problem restricted to planar graphs and propose to consider classic wheels and polyhedral wheels as basic patterns for the planar graphs. We analyze the colorability of the composition among wheels and introduce a novel algorithm based on three rules for the vertex-coloring problem. These rules are: 1) Selecting vertices in the frontier. 2) Processing subsumed wheels. 3) Processing centers of the remaining wheels. Our method forms a maximal independent set S1V (G) consisting of wheel's centers, and a maximum number of vertices in the frontier of the planar graph. Thus, we show that if the resulting graph G′ = (G − S1) is 3-colorable, then this implies the existence of a valid 4-coloring for G.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Notes in Theoretical Computer Science
Electronic Notes in Theoretical Computer Science Computer Science-Computer Science (all)
自引率
0.00%
发文量
0
期刊介绍: ENTCS is a venue for the rapid electronic publication of the proceedings of conferences, of lecture notes, monographs and other similar material for which quick publication and the availability on the electronic media is appropriate. Organizers of conferences whose proceedings appear in ENTCS, and authors of other material appearing as a volume in the series are allowed to make hard copies of the relevant volume for limited distribution. For example, conference proceedings may be distributed to participants at the meeting, and lecture notes can be distributed to those taking a course based on the material in the volume.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信