自适应部分扫描透射电子显微镜与强化学习

Jeffrey M. Ede
{"title":"自适应部分扫描透射电子显微镜与强化学习","authors":"Jeffrey M. Ede","doi":"10.1088/2632-2153/ABF5B6","DOIUrl":null,"url":null,"abstract":"Compressed sensing is applied to scanning transmission electron microscopy to decrease electron dose and scan time. However, established methods use static sampling strategies that do not adapt to samples. We have extended recurrent deterministic policy gradients to train deep LSTMs and differentiable neural computers to adaptively sample scan path segments. Recurrent agents cooperate with a convolutional generator to complete partial scans. We show that our approach outperforms established algorithms based on spiral scans, and we expect our results to be generalizable to other scan systems. Source code, pretrained models and training data is available at this https URL.","PeriodicalId":18148,"journal":{"name":"Mach. Learn. Sci. Technol.","volume":"19 1","pages":"45011"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Adaptive Partial Scanning Transmission Electron Microscopy with Reinforcement Learning\",\"authors\":\"Jeffrey M. Ede\",\"doi\":\"10.1088/2632-2153/ABF5B6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compressed sensing is applied to scanning transmission electron microscopy to decrease electron dose and scan time. However, established methods use static sampling strategies that do not adapt to samples. We have extended recurrent deterministic policy gradients to train deep LSTMs and differentiable neural computers to adaptively sample scan path segments. Recurrent agents cooperate with a convolutional generator to complete partial scans. We show that our approach outperforms established algorithms based on spiral scans, and we expect our results to be generalizable to other scan systems. Source code, pretrained models and training data is available at this https URL.\",\"PeriodicalId\":18148,\"journal\":{\"name\":\"Mach. Learn. Sci. Technol.\",\"volume\":\"19 1\",\"pages\":\"45011\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mach. Learn. Sci. Technol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2632-2153/ABF5B6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mach. Learn. Sci. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-2153/ABF5B6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

将压缩感知技术应用于扫描透射电子显微镜中,以减少电子剂量和扫描时间。然而,现有的方法使用静态抽样策略,不适应样本。我们扩展了循环确定性策略梯度来训练深度lstm和可微神经计算机来自适应采样扫描路径段。循环代理配合卷积生成器完成局部扫描。我们表明,我们的方法优于基于螺旋扫描的现有算法,我们希望我们的结果可以推广到其他扫描系统。源代码,预训练模型和训练数据可在此https URL。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Partial Scanning Transmission Electron Microscopy with Reinforcement Learning
Compressed sensing is applied to scanning transmission electron microscopy to decrease electron dose and scan time. However, established methods use static sampling strategies that do not adapt to samples. We have extended recurrent deterministic policy gradients to train deep LSTMs and differentiable neural computers to adaptively sample scan path segments. Recurrent agents cooperate with a convolutional generator to complete partial scans. We show that our approach outperforms established algorithms based on spiral scans, and we expect our results to be generalizable to other scan systems. Source code, pretrained models and training data is available at this https URL.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信