考虑接触热阻的多层材料有效导热系数的反演

IF 2.8 4区 工程技术 Q2 ENGINEERING, MECHANICAL
Chunyun Zhang, Zheng He, Lv Jun, Kun Liu, M. Cui
{"title":"考虑接触热阻的多层材料有效导热系数的反演","authors":"Chunyun Zhang, Zheng He, Lv Jun, Kun Liu, M. Cui","doi":"10.1115/1.4062306","DOIUrl":null,"url":null,"abstract":"\n Multilayer materials have been widely used in engineering applications, attributed to excellent thermo-mechanical performances. However, the thermal or mechanical properties of multilayer materials remain elusive, owing to contact behaviors etc. factors. In order to address this issue, an innovative method is employed to estimate the effective thermal conductivity (ETC) of multilayer materials considering thermal contact resistance (TCR) between layers, and the equivalence performance is investigated by solving three-dimensional inverse heat conduction problems. First, the equivalence method is validated by available experimental data of a multilayered insulation composite material. Then, the precision of different equivalence methods is compared, and the results indicate that the anisotropic equivalence method has higher accuracy than the isotropic and orthotropic equivalences for the 5-layer material in the present work. Finally, the robustness and stability of the anisotropic equivalence method are evaluated in detail. The present work provides a new alternative method for predicting the effective thermal conductivity of multilayer materials.","PeriodicalId":15937,"journal":{"name":"Journal of Heat Transfer-transactions of The Asme","volume":"28 13 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Inverse Estimation of Effective Thermal Conductivity of Multilayer Materials Considering Thermal Contact Resistance\",\"authors\":\"Chunyun Zhang, Zheng He, Lv Jun, Kun Liu, M. Cui\",\"doi\":\"10.1115/1.4062306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Multilayer materials have been widely used in engineering applications, attributed to excellent thermo-mechanical performances. However, the thermal or mechanical properties of multilayer materials remain elusive, owing to contact behaviors etc. factors. In order to address this issue, an innovative method is employed to estimate the effective thermal conductivity (ETC) of multilayer materials considering thermal contact resistance (TCR) between layers, and the equivalence performance is investigated by solving three-dimensional inverse heat conduction problems. First, the equivalence method is validated by available experimental data of a multilayered insulation composite material. Then, the precision of different equivalence methods is compared, and the results indicate that the anisotropic equivalence method has higher accuracy than the isotropic and orthotropic equivalences for the 5-layer material in the present work. Finally, the robustness and stability of the anisotropic equivalence method are evaluated in detail. The present work provides a new alternative method for predicting the effective thermal conductivity of multilayer materials.\",\"PeriodicalId\":15937,\"journal\":{\"name\":\"Journal of Heat Transfer-transactions of The Asme\",\"volume\":\"28 13 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Heat Transfer-transactions of The Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062306\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Heat Transfer-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062306","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

摘要

多层材料以其优异的热工性能在工程中得到了广泛的应用。然而,由于接触行为等因素,多层材料的热性能或力学性能仍然难以捉摸。为了解决这一问题,采用一种考虑层间接触热阻(TCR)的多层材料有效导热系数(ETC)估算方法,并通过求解三维逆热传导问题研究等效性能。首先,利用已有的多层绝缘复合材料的实验数据对等效方法进行了验证。然后,比较了不同等效方法的精度,结果表明,各向异性等效方法对5层材料的等效精度高于各向同性和正交异性等效方法。最后,详细评价了各向异性等效方法的鲁棒性和稳定性。本工作为多层材料的有效导热系数的预测提供了一种新的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inverse Estimation of Effective Thermal Conductivity of Multilayer Materials Considering Thermal Contact Resistance
Multilayer materials have been widely used in engineering applications, attributed to excellent thermo-mechanical performances. However, the thermal or mechanical properties of multilayer materials remain elusive, owing to contact behaviors etc. factors. In order to address this issue, an innovative method is employed to estimate the effective thermal conductivity (ETC) of multilayer materials considering thermal contact resistance (TCR) between layers, and the equivalence performance is investigated by solving three-dimensional inverse heat conduction problems. First, the equivalence method is validated by available experimental data of a multilayered insulation composite material. Then, the precision of different equivalence methods is compared, and the results indicate that the anisotropic equivalence method has higher accuracy than the isotropic and orthotropic equivalences for the 5-layer material in the present work. Finally, the robustness and stability of the anisotropic equivalence method are evaluated in detail. The present work provides a new alternative method for predicting the effective thermal conductivity of multilayer materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
182
审稿时长
4.7 months
期刊介绍: Topical areas including, but not limited to: Biological heat and mass transfer; Combustion and reactive flows; Conduction; Electronic and photonic cooling; Evaporation, boiling, and condensation; Experimental techniques; Forced convection; Heat exchanger fundamentals; Heat transfer enhancement; Combined heat and mass transfer; Heat transfer in manufacturing; Jets, wakes, and impingement cooling; Melting and solidification; Microscale and nanoscale heat and mass transfer; Natural and mixed convection; Porous media; Radiative heat transfer; Thermal systems; Two-phase flow and heat transfer. Such topical areas may be seen in: Aerospace; The environment; Gas turbines; Biotechnology; Electronic and photonic processes and equipment; Energy systems, Fire and combustion, heat pipes, manufacturing and materials processing, low temperature and arctic region heat transfer; Refrigeration and air conditioning; Homeland security systems; Multi-phase processes; Microscale and nanoscale devices and processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信