欠发达国家和较发达国家女性人口的贝叶斯人口重建。

Mark C Wheldon, Adrian E Raftery, Samuel J Clark, Patrick Gerland
{"title":"欠发达国家和较发达国家女性人口的贝叶斯人口重建。","authors":"Mark C Wheldon, Adrian E Raftery, Samuel J Clark, Patrick Gerland","doi":"10.1080/00324728.2016.1139164","DOIUrl":null,"url":null,"abstract":"<p><p>We show that Bayesian population reconstruction, a recent method for estimating past populations by age, works for data of widely varying quality. Bayesian reconstruction simultaneously estimates age-specific population counts, fertility rates, mortality rates, and net international migration flows from fragmentary data, while formally accounting for measurement error. As inputs, Bayesian reconstruction uses initial bias-reduced estimates of standard demographic variables. We reconstruct the female populations of three countries: Laos, a country with little vital registration data where population estimation depends largely on surveys; Sri Lanka, a country with some vital registration data; and New Zealand, a country with a highly developed statistical system and good quality vital registration data. In addition, we extend the method to countries without censuses at regular intervals. We also use it to assess the consistency of results between model life tables and available census data, and hence to compare different model life table systems. </p>","PeriodicalId":80485,"journal":{"name":"Annals of the Association of American Geographers. Association of American Geographers","volume":"92 1","pages":"21-37"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4798897/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bayesian population reconstruction of female populations for less developed and more developed countries.\",\"authors\":\"Mark C Wheldon, Adrian E Raftery, Samuel J Clark, Patrick Gerland\",\"doi\":\"10.1080/00324728.2016.1139164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We show that Bayesian population reconstruction, a recent method for estimating past populations by age, works for data of widely varying quality. Bayesian reconstruction simultaneously estimates age-specific population counts, fertility rates, mortality rates, and net international migration flows from fragmentary data, while formally accounting for measurement error. As inputs, Bayesian reconstruction uses initial bias-reduced estimates of standard demographic variables. We reconstruct the female populations of three countries: Laos, a country with little vital registration data where population estimation depends largely on surveys; Sri Lanka, a country with some vital registration data; and New Zealand, a country with a highly developed statistical system and good quality vital registration data. In addition, we extend the method to countries without censuses at regular intervals. We also use it to assess the consistency of results between model life tables and available census data, and hence to compare different model life table systems. </p>\",\"PeriodicalId\":80485,\"journal\":{\"name\":\"Annals of the Association of American Geographers. Association of American Geographers\",\"volume\":\"92 1\",\"pages\":\"21-37\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4798897/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of the Association of American Geographers. Association of American Geographers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00324728.2016.1139164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2016/2/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the Association of American Geographers. Association of American Geographers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00324728.2016.1139164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/2/23 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们的研究表明,贝叶斯人口重建法是一种按年龄估算过去人口的最新方法,它适用于质量参差不齐的数据。贝叶斯重构法可同时从零散数据中估算特定年龄的人口数量、生育率、死亡率和国际移民净流量,同时正式考虑测量误差。作为输入,贝叶斯重构使用标准人口变量的初始偏差缩小估计值。我们重建了三个国家的女性人口:老挝是一个缺乏人口动态登记数据的国家,其人口估计主要依赖于调查;斯里兰卡是一个拥有一些人口动态登记数据的国家;新西兰是一个拥有高度发达的统计系统和高质量人口动态登记数据的国家。此外,我们还将该方法推广到没有定期进行人口普查的国家。我们还用它来评估生命表模型与现有人口普查数据之间结果的一致性,从而对不同的生命表模型系统进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian population reconstruction of female populations for less developed and more developed countries.

We show that Bayesian population reconstruction, a recent method for estimating past populations by age, works for data of widely varying quality. Bayesian reconstruction simultaneously estimates age-specific population counts, fertility rates, mortality rates, and net international migration flows from fragmentary data, while formally accounting for measurement error. As inputs, Bayesian reconstruction uses initial bias-reduced estimates of standard demographic variables. We reconstruct the female populations of three countries: Laos, a country with little vital registration data where population estimation depends largely on surveys; Sri Lanka, a country with some vital registration data; and New Zealand, a country with a highly developed statistical system and good quality vital registration data. In addition, we extend the method to countries without censuses at regular intervals. We also use it to assess the consistency of results between model life tables and available census data, and hence to compare different model life table systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信