基于Lomax分布的自适应渐进式混合截尾数据的统计分析

Amal Helu, Hani Samawi
{"title":"基于Lomax分布的自适应渐进式混合截尾数据的统计分析","authors":"Amal Helu, Hani Samawi","doi":"10.19139/soic-2310-5070-1330","DOIUrl":null,"url":null,"abstract":"In this article, we consider statistical inferences about the unknown parameters of the Lomax distribution basedon the Adaptive Type-II Progressive Hybrid censoring scheme, this scheme can save both the total test time and the cost induced by the failure of the units and increases the efficiency of statistical analysis. The estimation of the parameters is derived using the maximum likelihood (MLE) and the Bayesian procedures. The Bayesian estimators are obtained based on the symmetric and asymmetric loss functions. There are no explicit forms for the Bayesian estimators, therefore, we propose Lindley’s approximation method to compute the Bayesian estimators. A comparison between these estimators is provided by using extensive simulation. A real-life data example is provided to illustrate our proposed estimators.","PeriodicalId":93376,"journal":{"name":"Statistics, optimization & information computing","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Statistical Analysis Based on Adaptive Progressive Hybrid Censored Data From Lomax Distribution\",\"authors\":\"Amal Helu, Hani Samawi\",\"doi\":\"10.19139/soic-2310-5070-1330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we consider statistical inferences about the unknown parameters of the Lomax distribution basedon the Adaptive Type-II Progressive Hybrid censoring scheme, this scheme can save both the total test time and the cost induced by the failure of the units and increases the efficiency of statistical analysis. The estimation of the parameters is derived using the maximum likelihood (MLE) and the Bayesian procedures. The Bayesian estimators are obtained based on the symmetric and asymmetric loss functions. There are no explicit forms for the Bayesian estimators, therefore, we propose Lindley’s approximation method to compute the Bayesian estimators. A comparison between these estimators is provided by using extensive simulation. A real-life data example is provided to illustrate our proposed estimators.\",\"PeriodicalId\":93376,\"journal\":{\"name\":\"Statistics, optimization & information computing\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics, optimization & information computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19139/soic-2310-5070-1330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics, optimization & information computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19139/soic-2310-5070-1330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文在自适应型渐进式混合滤波方案的基础上,考虑了Lomax分布中未知参数的统计推断,该方案既节省了总试验时间,又节省了机组故障引起的成本,提高了统计分析的效率。利用极大似然法和贝叶斯方法推导了参数的估计。给出了基于对称和非对称损失函数的贝叶斯估计量。由于贝叶斯估计量没有显式形式,因此,我们提出了Lindley近似法来计算贝叶斯估计量。通过广泛的仿真,对这些估计进行了比较。提供了一个实际数据示例来说明我们提出的估计器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical Analysis Based on Adaptive Progressive Hybrid Censored Data From Lomax Distribution
In this article, we consider statistical inferences about the unknown parameters of the Lomax distribution basedon the Adaptive Type-II Progressive Hybrid censoring scheme, this scheme can save both the total test time and the cost induced by the failure of the units and increases the efficiency of statistical analysis. The estimation of the parameters is derived using the maximum likelihood (MLE) and the Bayesian procedures. The Bayesian estimators are obtained based on the symmetric and asymmetric loss functions. There are no explicit forms for the Bayesian estimators, therefore, we propose Lindley’s approximation method to compute the Bayesian estimators. A comparison between these estimators is provided by using extensive simulation. A real-life data example is provided to illustrate our proposed estimators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信