{"title":"质子诱导降解液相结晶多晶硅薄膜太阳能电池","authors":"Tim Frijnts, C. Pellegrino, S. Gall, H. Neitzert","doi":"10.1109/PVSC45281.2020.9300392","DOIUrl":null,"url":null,"abstract":"Liquid phase crystallized poly-Si thin-film solar cells on glass with a-Si heterojunction emitters were irradiated with 68 MeV protons with different fluences up to 1013 protons/cm2. The degradation of devices with n-type and p-type absorber has been compared. A significantly stronger decrease of the solar cell performance parameters for devices with n-type absorber has been observed as compared to the p-type absorber case. This result corresponds to the different decrease of the minority carrier diffusion lengths with regard to the different poly-Si absorber materials.","PeriodicalId":6773,"journal":{"name":"2020 47th IEEE Photovoltaic Specialists Conference (PVSC)","volume":"27 1","pages":"2683-2687"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proton induced degradation of liquid phase crystallized poly-Si thin-film solar cells\",\"authors\":\"Tim Frijnts, C. Pellegrino, S. Gall, H. Neitzert\",\"doi\":\"10.1109/PVSC45281.2020.9300392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Liquid phase crystallized poly-Si thin-film solar cells on glass with a-Si heterojunction emitters were irradiated with 68 MeV protons with different fluences up to 1013 protons/cm2. The degradation of devices with n-type and p-type absorber has been compared. A significantly stronger decrease of the solar cell performance parameters for devices with n-type absorber has been observed as compared to the p-type absorber case. This result corresponds to the different decrease of the minority carrier diffusion lengths with regard to the different poly-Si absorber materials.\",\"PeriodicalId\":6773,\"journal\":{\"name\":\"2020 47th IEEE Photovoltaic Specialists Conference (PVSC)\",\"volume\":\"27 1\",\"pages\":\"2683-2687\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 47th IEEE Photovoltaic Specialists Conference (PVSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC45281.2020.9300392\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 47th IEEE Photovoltaic Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC45281.2020.9300392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Proton induced degradation of liquid phase crystallized poly-Si thin-film solar cells
Liquid phase crystallized poly-Si thin-film solar cells on glass with a-Si heterojunction emitters were irradiated with 68 MeV protons with different fluences up to 1013 protons/cm2. The degradation of devices with n-type and p-type absorber has been compared. A significantly stronger decrease of the solar cell performance parameters for devices with n-type absorber has been observed as compared to the p-type absorber case. This result corresponds to the different decrease of the minority carrier diffusion lengths with regard to the different poly-Si absorber materials.