一种新的检测恶意代码的抗混淆模型

Q4 Computer Science
Yuehan Wang, Tong Li, Yongquan Cai, Zhenhu Ning, Fei Xue, Di Jiao
{"title":"一种新的检测恶意代码的抗混淆模型","authors":"Yuehan Wang, Tong Li, Yongquan Cai, Zhenhu Ning, Fei Xue, Di Jiao","doi":"10.4018/IJOSSP.2017040102","DOIUrl":null,"url":null,"abstract":"In this article, the authors present a new malicious code detection model. The detection model improves typical n-gram feature extraction algorithms that are easy to be obfuscated. Specifically, the proposed model can dynamically determine obfuscation features and then adjust the selection of meaningful features to improve corresponding machine learning analysis. The experimental results show that the feature database, which is built based on the proposed feature selection and cleaning method, contains a stable number of features and can automatically get rid of obfuscation features. Overall, the proposed detection model has features of long timeliness, high applicability and high accuracy of identification.","PeriodicalId":53605,"journal":{"name":"International Journal of Open Source Software and Processes","volume":"46 1","pages":"25-43"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Anti-Obfuscation Model for Detecting Malicious Code\",\"authors\":\"Yuehan Wang, Tong Li, Yongquan Cai, Zhenhu Ning, Fei Xue, Di Jiao\",\"doi\":\"10.4018/IJOSSP.2017040102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, the authors present a new malicious code detection model. The detection model improves typical n-gram feature extraction algorithms that are easy to be obfuscated. Specifically, the proposed model can dynamically determine obfuscation features and then adjust the selection of meaningful features to improve corresponding machine learning analysis. The experimental results show that the feature database, which is built based on the proposed feature selection and cleaning method, contains a stable number of features and can automatically get rid of obfuscation features. Overall, the proposed detection model has features of long timeliness, high applicability and high accuracy of identification.\",\"PeriodicalId\":53605,\"journal\":{\"name\":\"International Journal of Open Source Software and Processes\",\"volume\":\"46 1\",\"pages\":\"25-43\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Open Source Software and Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJOSSP.2017040102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Open Source Software and Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJOSSP.2017040102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的恶意代码检测模型。该检测模型改进了容易混淆的典型n-gram特征提取算法。具体而言,该模型可以动态确定混淆特征,然后调整有意义特征的选择,以提高相应的机器学习分析。实验结果表明,基于所提出的特征选择与清洗方法构建的特征库包含稳定数量的特征,能够自动去除混淆特征。总体而言,所提出的检测模型具有时效性长、适用性强、识别精度高等特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Anti-Obfuscation Model for Detecting Malicious Code
In this article, the authors present a new malicious code detection model. The detection model improves typical n-gram feature extraction algorithms that are easy to be obfuscated. Specifically, the proposed model can dynamically determine obfuscation features and then adjust the selection of meaningful features to improve corresponding machine learning analysis. The experimental results show that the feature database, which is built based on the proposed feature selection and cleaning method, contains a stable number of features and can automatically get rid of obfuscation features. Overall, the proposed detection model has features of long timeliness, high applicability and high accuracy of identification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
16
期刊介绍: The International Journal of Open Source Software and Processes (IJOSSP) publishes high-quality peer-reviewed and original research articles on the large field of open source software and processes. This wide area entails many intriguing question and facets, including the special development process performed by a large number of geographically dispersed programmers, community issues like coordination and communication, motivations of the participants, and also economic and legal issues. Beyond this topic, open source software is an example of a highly distributed innovation process led by the users. Therefore, many aspects have relevance beyond the realm of software and its development. In this tradition, IJOSSP also publishes papers on these topics. IJOSSP is a multi-disciplinary outlet, and welcomes submissions from all relevant fields of research and applying a multitude of research approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信