一般交叉免疫保护和抗体依赖性增强在登革热动力学中的作用

IF 0.9 Q3 MATHEMATICS, APPLIED
Vanessa Steindorf, Sergio Oliva, Jianhong Wu, Maíra Aguiar
{"title":"一般交叉免疫保护和抗体依赖性增强在登革热动力学中的作用","authors":"Vanessa Steindorf,&nbsp;Sergio Oliva,&nbsp;Jianhong Wu,&nbsp;Maíra Aguiar","doi":"10.1155/2022/2074325","DOIUrl":null,"url":null,"abstract":"<div>\n <p>A mathematical model to describe the dynamic of a multiserotype infectious disease at the population level is studied. Applied to dengue fever epidemiology, we analyse a mathematical model with time delay to describe the cross-immunity protection period, including a key parameter for the antibody-dependent enhancement (ADE) effect, the well-known features of dengue fever infection. Numerical experiments are performed to show the stability of the coexistence equilibrium, which is completely determined by the basic reproduction number and by the invasion reproduction number, as well as the bifurcation structures for different scenarios of dengue fever transmission in a population. The model shows a rich dynamical behavior, from fixed points and periodic oscillations up to chaotic behaviour with complex attractors.</p>\n </div>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"2022 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2022/2074325","citationCount":"0","resultStr":"{\"title\":\"Effect of General Cross-Immunity Protection and Antibody-Dependent Enhancement in Dengue Dynamics\",\"authors\":\"Vanessa Steindorf,&nbsp;Sergio Oliva,&nbsp;Jianhong Wu,&nbsp;Maíra Aguiar\",\"doi\":\"10.1155/2022/2074325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>A mathematical model to describe the dynamic of a multiserotype infectious disease at the population level is studied. Applied to dengue fever epidemiology, we analyse a mathematical model with time delay to describe the cross-immunity protection period, including a key parameter for the antibody-dependent enhancement (ADE) effect, the well-known features of dengue fever infection. Numerical experiments are performed to show the stability of the coexistence equilibrium, which is completely determined by the basic reproduction number and by the invasion reproduction number, as well as the bifurcation structures for different scenarios of dengue fever transmission in a population. The model shows a rich dynamical behavior, from fixed points and periodic oscillations up to chaotic behaviour with complex attractors.</p>\\n </div>\",\"PeriodicalId\":100308,\"journal\":{\"name\":\"Computational and Mathematical Methods\",\"volume\":\"2022 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2022/2074325\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Mathematical Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2022/2074325\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2022/2074325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

研究了多血清型传染病在人群水平上的动态数学模型。应用于登革热流行病学,我们分析了一个具有时间延迟的数学模型来描述交叉免疫保护期,包括抗体依赖增强(ADE)效应的关键参数,这是登革热感染的众所周知的特征。通过数值实验证明了共存平衡的稳定性,该平衡完全由种群的基本繁殖数和入侵繁殖数以及登革热在不同情况下传播的分岔结构决定。该模型表现出丰富的动力学行为,从不动点和周期振荡到具有复杂吸引子的混沌行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effect of General Cross-Immunity Protection and Antibody-Dependent Enhancement in Dengue Dynamics

Effect of General Cross-Immunity Protection and Antibody-Dependent Enhancement in Dengue Dynamics

A mathematical model to describe the dynamic of a multiserotype infectious disease at the population level is studied. Applied to dengue fever epidemiology, we analyse a mathematical model with time delay to describe the cross-immunity protection period, including a key parameter for the antibody-dependent enhancement (ADE) effect, the well-known features of dengue fever infection. Numerical experiments are performed to show the stability of the coexistence equilibrium, which is completely determined by the basic reproduction number and by the invasion reproduction number, as well as the bifurcation structures for different scenarios of dengue fever transmission in a population. The model shows a rich dynamical behavior, from fixed points and periodic oscillations up to chaotic behaviour with complex attractors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信