特征变异的实谱紧化:表征与应用

M. Burger, A. Iozzi, A. Parreau, M. B. Pozzetti
{"title":"特征变异的实谱紧化:表征与应用","authors":"M. Burger, A. Iozzi, A. Parreau, M. B. Pozzetti","doi":"10.5802/crmath.123","DOIUrl":null,"url":null,"abstract":"We announce results on a compactification of general character varieties that has good topological properties and give various interpretations of its ideal points. We relate this to the Weyl chamber length compactification and apply our results to the theory of maximal and Hitchin representations.","PeriodicalId":8454,"journal":{"name":"arXiv: Geometric Topology","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"The real spectrum compactification of character varieties: characterizations and applications\",\"authors\":\"M. Burger, A. Iozzi, A. Parreau, M. B. Pozzetti\",\"doi\":\"10.5802/crmath.123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We announce results on a compactification of general character varieties that has good topological properties and give various interpretations of its ideal points. We relate this to the Weyl chamber length compactification and apply our results to the theory of maximal and Hitchin representations.\",\"PeriodicalId\":8454,\"journal\":{\"name\":\"arXiv: Geometric Topology\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/crmath.123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/crmath.123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

我们公布了具有良好拓扑性质的一般特征变体的紧化结果,并给出了其理想点的各种解释。我们将此与Weyl腔室长度紧化联系起来,并将我们的结果应用于极大和希钦表示理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The real spectrum compactification of character varieties: characterizations and applications
We announce results on a compactification of general character varieties that has good topological properties and give various interpretations of its ideal points. We relate this to the Weyl chamber length compactification and apply our results to the theory of maximal and Hitchin representations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信