小特征有限域的DLP拟多项式时间算法的多项式选择

IF 1.6 2区 数学 Q2 MATHEMATICS, APPLIED
Giacomo Micheli
{"title":"小特征有限域的DLP拟多项式时间算法的多项式选择","authors":"Giacomo Micheli","doi":"10.1137/18M1177196","DOIUrl":null,"url":null,"abstract":"In this paper we characterize the polynomials $f$ over a finite field $F$ satisfying the following property: there exists an extension field $L$ of $F$ such that for any positive integer $\\ell$ less than or equal to the degree of $f$, there exists $t_0$ in $L$ with the property that the polynomial $f-t_0$ has an irreducible factor in $L[x]$ of degree $\\ell$. This result is then used to progress to the last step which is needed to remove the heuristic from one of the quasi-polynomial time algorithms for discrete logarithm problems (DLPs) in small characteristic. Our method is general and can be used to tackle similar problems which involve factorization patterns of polynomials over finite fields.","PeriodicalId":48489,"journal":{"name":"SIAM Journal on Applied Algebra and Geometry","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2019-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"On the Selection of Polynomials for the DLP Quasi-Polynomial Time Algorithm for Finite Fields of Small Characteristic\",\"authors\":\"Giacomo Micheli\",\"doi\":\"10.1137/18M1177196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we characterize the polynomials $f$ over a finite field $F$ satisfying the following property: there exists an extension field $L$ of $F$ such that for any positive integer $\\\\ell$ less than or equal to the degree of $f$, there exists $t_0$ in $L$ with the property that the polynomial $f-t_0$ has an irreducible factor in $L[x]$ of degree $\\\\ell$. This result is then used to progress to the last step which is needed to remove the heuristic from one of the quasi-polynomial time algorithms for discrete logarithm problems (DLPs) in small characteristic. Our method is general and can be used to tackle similar problems which involve factorization patterns of polynomials over finite fields.\",\"PeriodicalId\":48489,\"journal\":{\"name\":\"SIAM Journal on Applied Algebra and Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2019-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Applied Algebra and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/18M1177196\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Algebra and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/18M1177196","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 10

摘要

本文刻画了有限域$f$上的多项式$f$满足以下性质:$f$存在一个扩展域$L$,使得对于小于等于$f$阶的任何正整数$\ell$, $L$中存在$t_0$,并且多项式$f-t_0$在$L[x]$阶$\ell$中有一个不可约因子。然后利用该结果进行最后一步,该步骤需要从小特征离散对数问题(dlp)的准多项式时间算法中去除启发式。我们的方法具有通用性,可用于解决涉及有限域上多项式分解模式的类似问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Selection of Polynomials for the DLP Quasi-Polynomial Time Algorithm for Finite Fields of Small Characteristic
In this paper we characterize the polynomials $f$ over a finite field $F$ satisfying the following property: there exists an extension field $L$ of $F$ such that for any positive integer $\ell$ less than or equal to the degree of $f$, there exists $t_0$ in $L$ with the property that the polynomial $f-t_0$ has an irreducible factor in $L[x]$ of degree $\ell$. This result is then used to progress to the last step which is needed to remove the heuristic from one of the quasi-polynomial time algorithms for discrete logarithm problems (DLPs) in small characteristic. Our method is general and can be used to tackle similar problems which involve factorization patterns of polynomials over finite fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信