{"title":"分割环面的高度和表示","authors":"V. Talamanca","doi":"10.5802/jtnb.1015","DOIUrl":null,"url":null,"abstract":"Let Gm denote the d-dimensional split torus defined over a number field k. To each Gm-module E we associate a height function hE defined by means of the spectral height on GL(E). This gives rise to a height pairing between the monoid of irreducible Gm-modules of Gm and the group Gm ( k ) . Our main results are a characterization of those Gm-modules E for which hE satisfeis Northcott’s finiteness theorem, the determination of the kernels of the height pairing, as well as, for a few special classes of Gm-modules, of the group of automorphisms that preserve hE .","PeriodicalId":48896,"journal":{"name":"Journal De Theorie Des Nombres De Bordeaux","volume":"SE-13 1","pages":"41-57"},"PeriodicalIF":0.3000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heights and representations of split tori\",\"authors\":\"V. Talamanca\",\"doi\":\"10.5802/jtnb.1015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let Gm denote the d-dimensional split torus defined over a number field k. To each Gm-module E we associate a height function hE defined by means of the spectral height on GL(E). This gives rise to a height pairing between the monoid of irreducible Gm-modules of Gm and the group Gm ( k ) . Our main results are a characterization of those Gm-modules E for which hE satisfeis Northcott’s finiteness theorem, the determination of the kernels of the height pairing, as well as, for a few special classes of Gm-modules, of the group of automorphisms that preserve hE .\",\"PeriodicalId\":48896,\"journal\":{\"name\":\"Journal De Theorie Des Nombres De Bordeaux\",\"volume\":\"SE-13 1\",\"pages\":\"41-57\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal De Theorie Des Nombres De Bordeaux\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/jtnb.1015\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Theorie Des Nombres De Bordeaux","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/jtnb.1015","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Let Gm denote the d-dimensional split torus defined over a number field k. To each Gm-module E we associate a height function hE defined by means of the spectral height on GL(E). This gives rise to a height pairing between the monoid of irreducible Gm-modules of Gm and the group Gm ( k ) . Our main results are a characterization of those Gm-modules E for which hE satisfeis Northcott’s finiteness theorem, the determination of the kernels of the height pairing, as well as, for a few special classes of Gm-modules, of the group of automorphisms that preserve hE .