{"title":"局部渐近正态量子统计模型估计量的效率","authors":"A. Fujiwara, Koichi Yamagata","doi":"10.1214/23-aos2285","DOIUrl":null,"url":null,"abstract":"We herein establish an asymptotic representation theorem for locally asymptotically normal quantum statistical models. This theorem enables us to study the asymptotic efficiency of quantum estimators such as quantum regular estimators and quantum minimax estimators, leading to a universal tight lower bound beyond the i.i.d. assumption. This formulation complements the theory of quantum contiguity developed in the previous paper [Fujiwara and Yamagata, Bernoulli 26 (2020) 2105-2141], providing a solid foundation of the theory of weak quantum local asymptotic normality.","PeriodicalId":22375,"journal":{"name":"The Annals of Statistics","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Efficiency of estimators for locally asymptotically normal quantum statistical models\",\"authors\":\"A. Fujiwara, Koichi Yamagata\",\"doi\":\"10.1214/23-aos2285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We herein establish an asymptotic representation theorem for locally asymptotically normal quantum statistical models. This theorem enables us to study the asymptotic efficiency of quantum estimators such as quantum regular estimators and quantum minimax estimators, leading to a universal tight lower bound beyond the i.i.d. assumption. This formulation complements the theory of quantum contiguity developed in the previous paper [Fujiwara and Yamagata, Bernoulli 26 (2020) 2105-2141], providing a solid foundation of the theory of weak quantum local asymptotic normality.\",\"PeriodicalId\":22375,\"journal\":{\"name\":\"The Annals of Statistics\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Annals of Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/23-aos2285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Annals of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/23-aos2285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
本文建立了局部渐近正态量子统计模型的渐近表示定理。这个定理使我们能够研究量子估计量的渐近效率,如量子正则估计量和量子极大极小估计量,从而得到一个超越i.i.d假设的普遍紧下界。该公式补充了先前论文[Fujiwara and Yamagata, Bernoulli 26(2020) 2105-2141]中发展的量子连续理论,为弱量子局部渐近正态性理论提供了坚实的基础。
Efficiency of estimators for locally asymptotically normal quantum statistical models
We herein establish an asymptotic representation theorem for locally asymptotically normal quantum statistical models. This theorem enables us to study the asymptotic efficiency of quantum estimators such as quantum regular estimators and quantum minimax estimators, leading to a universal tight lower bound beyond the i.i.d. assumption. This formulation complements the theory of quantum contiguity developed in the previous paper [Fujiwara and Yamagata, Bernoulli 26 (2020) 2105-2141], providing a solid foundation of the theory of weak quantum local asymptotic normality.