深度学习在大空间数据分区中的应用

IF 1.2 Q4 REMOTE SENSING
VuTin, BelussiAlberto, MiglioriniSara, EldwayAhmed
{"title":"深度学习在大空间数据分区中的应用","authors":"VuTin, BelussiAlberto, MiglioriniSara, EldwayAhmed","doi":"10.1145/3402126","DOIUrl":null,"url":null,"abstract":"This article explores the use of deep learning to choose an appropriate spatial partitioning technique for big data. The exponential increase in the volumes of spatial datasets resulted in the deve...","PeriodicalId":43641,"journal":{"name":"ACM Transactions on Spatial Algorithms and Systems","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2020-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Using Deep Learning for Big Spatial Data Partitioning\",\"authors\":\"VuTin, BelussiAlberto, MiglioriniSara, EldwayAhmed\",\"doi\":\"10.1145/3402126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article explores the use of deep learning to choose an appropriate spatial partitioning technique for big data. The exponential increase in the volumes of spatial datasets resulted in the deve...\",\"PeriodicalId\":43641,\"journal\":{\"name\":\"ACM Transactions on Spatial Algorithms and Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2020-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Spatial Algorithms and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3402126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Spatial Algorithms and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3402126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 9

摘要

本文探讨了如何利用深度学习为大数据选择合适的空间划分技术。空间数据集数量的指数级增长导致了…
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Deep Learning for Big Spatial Data Partitioning
This article explores the use of deep learning to choose an appropriate spatial partitioning technique for big data. The exponential increase in the volumes of spatial datasets resulted in the deve...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
5.30%
发文量
43
期刊介绍: ACM Transactions on Spatial Algorithms and Systems (TSAS) is a scholarly journal that publishes the highest quality papers on all aspects of spatial algorithms and systems and closely related disciplines. It has a multi-disciplinary perspective in that it spans a large number of areas where spatial data is manipulated or visualized (regardless of how it is specified - i.e., geometrically or textually) such as geography, geographic information systems (GIS), geospatial and spatiotemporal databases, spatial and metric indexing, location-based services, web-based spatial applications, geographic information retrieval (GIR), spatial reasoning and mining, security and privacy, as well as the related visual computing areas of computer graphics, computer vision, geometric modeling, and visualization where the spatial, geospatial, and spatiotemporal data is central.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信