{"title":"提高光伏阵列太阳辐射跟踪器的能源效率","authors":"G. M. Dousoky, A. El-Sayed, M. Shoyama","doi":"10.1109/ECCE.2012.6342264","DOIUrl":null,"url":null,"abstract":"This paper investigates PV panels' orientation strategies to achieve the maximum incident radiation over the surface of the solar cells at a reasonable cost. Conventionally, PV panels are tilted with the site's latitude angle or the difference between the latitude angle and the solar declination angle of the site. A monthly-based orientation strategy has been proposed and analyzed in this study. The proposed strategy implies that the PV panels are tilted with the monthly-based angle that achieves the maximum incident radiation. Furthermore, the impact of using the proposed orientation strategy and other conventional strategies on the produced power and on the PV system design features has been investigated in detail. A Japanese city (Fukuoka) and an Egyptian city (Al-Kharijah) have been considered as locations for the PV power system installation. The results showed that the proposed strategy achieved an increase in the produced energy from the PV. Therefore, the cost of the PV power system components can be reduced including the solar cells area, and the land area.","PeriodicalId":6401,"journal":{"name":"2012 IEEE Energy Conversion Congress and Exposition (ECCE)","volume":"38 1","pages":"4113-4120"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Increasing energy-efficiency in solar radiation trackers for photovoltaic arrays\",\"authors\":\"G. M. Dousoky, A. El-Sayed, M. Shoyama\",\"doi\":\"10.1109/ECCE.2012.6342264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates PV panels' orientation strategies to achieve the maximum incident radiation over the surface of the solar cells at a reasonable cost. Conventionally, PV panels are tilted with the site's latitude angle or the difference between the latitude angle and the solar declination angle of the site. A monthly-based orientation strategy has been proposed and analyzed in this study. The proposed strategy implies that the PV panels are tilted with the monthly-based angle that achieves the maximum incident radiation. Furthermore, the impact of using the proposed orientation strategy and other conventional strategies on the produced power and on the PV system design features has been investigated in detail. A Japanese city (Fukuoka) and an Egyptian city (Al-Kharijah) have been considered as locations for the PV power system installation. The results showed that the proposed strategy achieved an increase in the produced energy from the PV. Therefore, the cost of the PV power system components can be reduced including the solar cells area, and the land area.\",\"PeriodicalId\":6401,\"journal\":{\"name\":\"2012 IEEE Energy Conversion Congress and Exposition (ECCE)\",\"volume\":\"38 1\",\"pages\":\"4113-4120\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Energy Conversion Congress and Exposition (ECCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECCE.2012.6342264\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Energy Conversion Congress and Exposition (ECCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCE.2012.6342264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Increasing energy-efficiency in solar radiation trackers for photovoltaic arrays
This paper investigates PV panels' orientation strategies to achieve the maximum incident radiation over the surface of the solar cells at a reasonable cost. Conventionally, PV panels are tilted with the site's latitude angle or the difference between the latitude angle and the solar declination angle of the site. A monthly-based orientation strategy has been proposed and analyzed in this study. The proposed strategy implies that the PV panels are tilted with the monthly-based angle that achieves the maximum incident radiation. Furthermore, the impact of using the proposed orientation strategy and other conventional strategies on the produced power and on the PV system design features has been investigated in detail. A Japanese city (Fukuoka) and an Egyptian city (Al-Kharijah) have been considered as locations for the PV power system installation. The results showed that the proposed strategy achieved an increase in the produced energy from the PV. Therefore, the cost of the PV power system components can be reduced including the solar cells area, and the land area.