全自动3D胎儿心脏超声评估的机器学习框架

Manna E. Philip, Ana Ferrieira, Aishani Tomar, Sparsh Chawla, A. Welsh, G. Stevenson, A. Sowmya
{"title":"全自动3D胎儿心脏超声评估的机器学习框架","authors":"Manna E. Philip, Ana Ferrieira, Aishani Tomar, Sparsh Chawla, A. Welsh, G. Stevenson, A. Sowmya","doi":"10.1109/ISBI52829.2022.9761613","DOIUrl":null,"url":null,"abstract":"Fetal cardiac ultrasound (US) is an understudied but important area of medical image analysis. In this work, we identify sources of error and obstacles that may render artificial intelligence (AI) models ineffective in this particular setting. We then present an efficient AI segmentation pipeline for the fetal heart using raw 3D-US volume data with no prior processing. We applied our work on a dataset consisting of 30 3D-US volumes from 26 participants, acquired using 3 different probes on 2 different ultrasound machines. Using an appropriate data enhancement schema, performance of fetal cardiac segmentation improves using state-of-the-art deep learning (DL) methods. We obtained a 19% increase in the Dice Similarity Coefficient (DSC) for convolutional neural networks (CNN). A 16% increase was observed for transformer based networks. The machine learning framework focuses on the data rather than the method, and is able to achieve good performance in spite of the numerous variations in the dataset.","PeriodicalId":6827,"journal":{"name":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","volume":"100 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Machine Learning Framework for Fully Automatic 3D Fetal Cardiac Ultrasound Evaluation\",\"authors\":\"Manna E. Philip, Ana Ferrieira, Aishani Tomar, Sparsh Chawla, A. Welsh, G. Stevenson, A. Sowmya\",\"doi\":\"10.1109/ISBI52829.2022.9761613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fetal cardiac ultrasound (US) is an understudied but important area of medical image analysis. In this work, we identify sources of error and obstacles that may render artificial intelligence (AI) models ineffective in this particular setting. We then present an efficient AI segmentation pipeline for the fetal heart using raw 3D-US volume data with no prior processing. We applied our work on a dataset consisting of 30 3D-US volumes from 26 participants, acquired using 3 different probes on 2 different ultrasound machines. Using an appropriate data enhancement schema, performance of fetal cardiac segmentation improves using state-of-the-art deep learning (DL) methods. We obtained a 19% increase in the Dice Similarity Coefficient (DSC) for convolutional neural networks (CNN). A 16% increase was observed for transformer based networks. The machine learning framework focuses on the data rather than the method, and is able to achieve good performance in spite of the numerous variations in the dataset.\",\"PeriodicalId\":6827,\"journal\":{\"name\":\"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)\",\"volume\":\"100 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI52829.2022.9761613\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI52829.2022.9761613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

胎儿心脏超声(US)是医学图像分析的一个研究不足但重要的领域。在这项工作中,我们确定了可能使人工智能(AI)模型在这种特定环境中无效的错误来源和障碍。然后,我们使用未经事先处理的原始3D-US体积数据,为胎儿心脏提供了一个有效的人工智能分割管道。我们将我们的工作应用于一个由26名参与者的30个3D-US体积组成的数据集,这些数据集使用2种不同的超声机器上的3种不同探针获得。使用适当的数据增强模式,使用最先进的深度学习(DL)方法提高胎儿心脏分割的性能。我们获得了卷积神经网络(CNN)的骰子相似系数(DSC)增加19%。基于变压器的网络增加了16%。机器学习框架专注于数据而不是方法,尽管数据集中有许多变化,但仍然能够取得良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Machine Learning Framework for Fully Automatic 3D Fetal Cardiac Ultrasound Evaluation
Fetal cardiac ultrasound (US) is an understudied but important area of medical image analysis. In this work, we identify sources of error and obstacles that may render artificial intelligence (AI) models ineffective in this particular setting. We then present an efficient AI segmentation pipeline for the fetal heart using raw 3D-US volume data with no prior processing. We applied our work on a dataset consisting of 30 3D-US volumes from 26 participants, acquired using 3 different probes on 2 different ultrasound machines. Using an appropriate data enhancement schema, performance of fetal cardiac segmentation improves using state-of-the-art deep learning (DL) methods. We obtained a 19% increase in the Dice Similarity Coefficient (DSC) for convolutional neural networks (CNN). A 16% increase was observed for transformer based networks. The machine learning framework focuses on the data rather than the method, and is able to achieve good performance in spite of the numerous variations in the dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信