深湍流边界层中表面附着钝体的实验研究

Helen Amorin, Xingjun Fang, M. Tachie
{"title":"深湍流边界层中表面附着钝体的实验研究","authors":"Helen Amorin, Xingjun Fang, M. Tachie","doi":"10.1115/FEDSM2018-83498","DOIUrl":null,"url":null,"abstract":"This paper reports an experimental study conducted to investigate the effects of aspect ratio on the reattachment length and statistical properties in turbulent flow over three-dimensional surface-mounted bluff bodies. This study focuses on a surface-mounted body whose height is significantly smaller than the thickness of the approaching turbulent boundary layer. The studied aspect ratios of the step range from w/h = 0.5 to 20, where w and h denote the spanwise width and height of the step, respectively. All experiments were carried out in an open water channel, and the velocity measurements were performed using a time-resolved particle image velocimetry (TR-PIV) system. The Reynolds number, based on the freestream of the approach boundary layer and step height, is 12540, while the ratio of the boundary layer to step height is 4.83. Two distinct regions of separation are observed on top of the step and downstream of the step. In both separation regions, the reattachment length increases monotonically as aspect ratio increases from w/h = 0.5 to 8, and the reattachment length reaches an asymptotic value and does not vary significantly with aspect ratio larger than 8. The effects of aspect ratios on the mean velocities and Reynolds stresses were also examined.","PeriodicalId":23480,"journal":{"name":"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Experimental Study of Surface-Mounted Bluff Bodies Immersed in Deep Turbulent Boundary Layers\",\"authors\":\"Helen Amorin, Xingjun Fang, M. Tachie\",\"doi\":\"10.1115/FEDSM2018-83498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports an experimental study conducted to investigate the effects of aspect ratio on the reattachment length and statistical properties in turbulent flow over three-dimensional surface-mounted bluff bodies. This study focuses on a surface-mounted body whose height is significantly smaller than the thickness of the approaching turbulent boundary layer. The studied aspect ratios of the step range from w/h = 0.5 to 20, where w and h denote the spanwise width and height of the step, respectively. All experiments were carried out in an open water channel, and the velocity measurements were performed using a time-resolved particle image velocimetry (TR-PIV) system. The Reynolds number, based on the freestream of the approach boundary layer and step height, is 12540, while the ratio of the boundary layer to step height is 4.83. Two distinct regions of separation are observed on top of the step and downstream of the step. In both separation regions, the reattachment length increases monotonically as aspect ratio increases from w/h = 0.5 to 8, and the reattachment length reaches an asymptotic value and does not vary significantly with aspect ratio larger than 8. The effects of aspect ratios on the mean velocities and Reynolds stresses were also examined.\",\"PeriodicalId\":23480,\"journal\":{\"name\":\"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/FEDSM2018-83498\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/FEDSM2018-83498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文报道了一项实验研究,探讨了展弦比对三维壁面钝体湍流中再附着长度和统计特性的影响。本研究的重点是一个表面安装体,其高度明显小于接近的湍流边界层的厚度。所研究的步长比范围为w/h = 0.5 ~ 20,其中w和h分别为步长的宽度和高度。所有实验均在开放水道中进行,并使用时间分辨粒子图像测速(TR-PIV)系统进行速度测量。基于接近边界层自由流和台阶高度的雷诺数为12540,边界层与台阶高度之比为4.83。在台阶的顶部和下游观察到两个不同的分离区域。从w/h = 0.5到8,两个分离区域的重附长度均随宽高比的增加而单调增加,当宽高比大于8时,重附长度达到渐近值,变化不显著。研究了长径比对平均速度和雷诺应力的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Experimental Study of Surface-Mounted Bluff Bodies Immersed in Deep Turbulent Boundary Layers
This paper reports an experimental study conducted to investigate the effects of aspect ratio on the reattachment length and statistical properties in turbulent flow over three-dimensional surface-mounted bluff bodies. This study focuses on a surface-mounted body whose height is significantly smaller than the thickness of the approaching turbulent boundary layer. The studied aspect ratios of the step range from w/h = 0.5 to 20, where w and h denote the spanwise width and height of the step, respectively. All experiments were carried out in an open water channel, and the velocity measurements were performed using a time-resolved particle image velocimetry (TR-PIV) system. The Reynolds number, based on the freestream of the approach boundary layer and step height, is 12540, while the ratio of the boundary layer to step height is 4.83. Two distinct regions of separation are observed on top of the step and downstream of the step. In both separation regions, the reattachment length increases monotonically as aspect ratio increases from w/h = 0.5 to 8, and the reattachment length reaches an asymptotic value and does not vary significantly with aspect ratio larger than 8. The effects of aspect ratios on the mean velocities and Reynolds stresses were also examined.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信