{"title":"脂肪分布和相关心脏代谢疾病的基因组驱动因素的性别差异:精准医学的机会。","authors":"H. Lumish, M. O'Reilly, M. Reilly","doi":"10.1161/ATVBAHA.119.313154","DOIUrl":null,"url":null,"abstract":"This review focuses on the human genetics, epidemiology, and molecular pathophysiology of sex differences in central obesity, adipose distribution, and related cardiometabolic disorders. Distribution of fat is important for cardiometabolic health, with peripheral fat depots having a protective effect and central visceral fat depots conferring a detrimental effect on health. There are important sex differences in fat distribution that are masked when studying body mass index as a measure of obesity. From epidemiological, murine, and in vitro studies, several mechanisms have been proposed to explain the sex differences in adipose distribution, including sex hormonal effects, cell-intrinsic properties, and the microenvironment in fat depots. More recently, human genetics have revealed hundreds of loci for central obesity providing disruptive opportunities for mechanistic discoveries and clinical translation. A striking feature is that over one-third of these loci have reproducible but poorly understood sexual dimorphic associations with central obesity, most having stronger effects in women. Understanding the genetic and molecular mechanisms of adipose distribution and its sexual dimorphism in humans provides a unique opportunity to advance mechanism-based, sex and gender aware, precision medicine for early identification of at-risk individuals, as well as novel therapeutic strategies for central obesity and cardiometabolic disorders.","PeriodicalId":8404,"journal":{"name":"Arteriosclerosis, Thrombosis, & Vascular Biology","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Sex Differences in Genomic Drivers of Adipose Distribution and Related Cardiometabolic Disorders: Opportunities for Precision Medicine.\",\"authors\":\"H. Lumish, M. O'Reilly, M. Reilly\",\"doi\":\"10.1161/ATVBAHA.119.313154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This review focuses on the human genetics, epidemiology, and molecular pathophysiology of sex differences in central obesity, adipose distribution, and related cardiometabolic disorders. Distribution of fat is important for cardiometabolic health, with peripheral fat depots having a protective effect and central visceral fat depots conferring a detrimental effect on health. There are important sex differences in fat distribution that are masked when studying body mass index as a measure of obesity. From epidemiological, murine, and in vitro studies, several mechanisms have been proposed to explain the sex differences in adipose distribution, including sex hormonal effects, cell-intrinsic properties, and the microenvironment in fat depots. More recently, human genetics have revealed hundreds of loci for central obesity providing disruptive opportunities for mechanistic discoveries and clinical translation. A striking feature is that over one-third of these loci have reproducible but poorly understood sexual dimorphic associations with central obesity, most having stronger effects in women. Understanding the genetic and molecular mechanisms of adipose distribution and its sexual dimorphism in humans provides a unique opportunity to advance mechanism-based, sex and gender aware, precision medicine for early identification of at-risk individuals, as well as novel therapeutic strategies for central obesity and cardiometabolic disorders.\",\"PeriodicalId\":8404,\"journal\":{\"name\":\"Arteriosclerosis, Thrombosis, & Vascular Biology\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arteriosclerosis, Thrombosis, & Vascular Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1161/ATVBAHA.119.313154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arteriosclerosis, Thrombosis, & Vascular Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1161/ATVBAHA.119.313154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sex Differences in Genomic Drivers of Adipose Distribution and Related Cardiometabolic Disorders: Opportunities for Precision Medicine.
This review focuses on the human genetics, epidemiology, and molecular pathophysiology of sex differences in central obesity, adipose distribution, and related cardiometabolic disorders. Distribution of fat is important for cardiometabolic health, with peripheral fat depots having a protective effect and central visceral fat depots conferring a detrimental effect on health. There are important sex differences in fat distribution that are masked when studying body mass index as a measure of obesity. From epidemiological, murine, and in vitro studies, several mechanisms have been proposed to explain the sex differences in adipose distribution, including sex hormonal effects, cell-intrinsic properties, and the microenvironment in fat depots. More recently, human genetics have revealed hundreds of loci for central obesity providing disruptive opportunities for mechanistic discoveries and clinical translation. A striking feature is that over one-third of these loci have reproducible but poorly understood sexual dimorphic associations with central obesity, most having stronger effects in women. Understanding the genetic and molecular mechanisms of adipose distribution and its sexual dimorphism in humans provides a unique opportunity to advance mechanism-based, sex and gender aware, precision medicine for early identification of at-risk individuals, as well as novel therapeutic strategies for central obesity and cardiometabolic disorders.