{"title":"地理信息系统分析的地质表面方向:qgSurf插件的QGIS","authors":"M. Alberti","doi":"10.7287/peerj.preprints.27694v1","DOIUrl":null,"url":null,"abstract":"GIS techniques enable the quantitative analysis of geological structures. In particular, topographic traces of geological lineaments can be compared with the theoretical ones for geological planes, to determine the best fitting theoretical planes. qgSurf, a Python plugin for QGIS, implements this kind of processing, in addition to the determination of the best-fit plane to a set of topographic points, the calculation of the distances between topographic traces and geological planes and also basic stereonet plottings. By applying these tools to a case study of a Cenozoic thrust lineament in the Southern Apennines (Calabria, Southern Italy), we deduce the approximate orientations of the lineament in different fault-delimited sectors and calculate the misfits between the theoretical orientations and the actual topographic traces.","PeriodicalId":93040,"journal":{"name":"PeerJ preprints","volume":"4 1","pages":"e27694"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"GIS analysis of geological surfaces orientations: the qgSurf plugin for QGIS\",\"authors\":\"M. Alberti\",\"doi\":\"10.7287/peerj.preprints.27694v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"GIS techniques enable the quantitative analysis of geological structures. In particular, topographic traces of geological lineaments can be compared with the theoretical ones for geological planes, to determine the best fitting theoretical planes. qgSurf, a Python plugin for QGIS, implements this kind of processing, in addition to the determination of the best-fit plane to a set of topographic points, the calculation of the distances between topographic traces and geological planes and also basic stereonet plottings. By applying these tools to a case study of a Cenozoic thrust lineament in the Southern Apennines (Calabria, Southern Italy), we deduce the approximate orientations of the lineament in different fault-delimited sectors and calculate the misfits between the theoretical orientations and the actual topographic traces.\",\"PeriodicalId\":93040,\"journal\":{\"name\":\"PeerJ preprints\",\"volume\":\"4 1\",\"pages\":\"e27694\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PeerJ preprints\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7287/peerj.preprints.27694v1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ preprints","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7287/peerj.preprints.27694v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
GIS analysis of geological surfaces orientations: the qgSurf plugin for QGIS
GIS techniques enable the quantitative analysis of geological structures. In particular, topographic traces of geological lineaments can be compared with the theoretical ones for geological planes, to determine the best fitting theoretical planes. qgSurf, a Python plugin for QGIS, implements this kind of processing, in addition to the determination of the best-fit plane to a set of topographic points, the calculation of the distances between topographic traces and geological planes and also basic stereonet plottings. By applying these tools to a case study of a Cenozoic thrust lineament in the Southern Apennines (Calabria, Southern Italy), we deduce the approximate orientations of the lineament in different fault-delimited sectors and calculate the misfits between the theoretical orientations and the actual topographic traces.