{"title":"基于无监督学习的云环境下运行时恶意软件注入攻击预防","authors":"M. Prabhavathy, S. Umamaheswari","doi":"10.32604/iasc.2022.018257","DOIUrl":null,"url":null,"abstract":"Cloud computing utilizes various Internet-based technologies to enhance the Internet user experience. Cloud systems are on the rise, as this technology has completely revolutionized the digital industry. Currently, many users rely on cloud-based solutions to acquire business information and knowledge. As a result, cloud computing services such as SaaS and PaaS store a warehouse of sensitive and valuable information, which has turned the cloud systems into the obvious target for many malware creators and hackers. These malicious attackers attempt to gain illegal access to a myriad of valuable information such as user personal information, password, credit/debit card numbers, etc., from systems as the unsecured e-learning ones. As an important part of cloud services, security is needed to protect business customers and users from unauthorized threats. This paper aims to identify malware that attacks cloud-based software solutions using an unsupervised learning model with fixed-weight Hamming and Mexiannet. Different types of attack methodologies and various ways of malicious instructions targeting unknown files in cloud services are investigated. The result and analysis in this study provide an evolution of the unsupervised learning detection algorithm with an accuracy of 94.05%.","PeriodicalId":50357,"journal":{"name":"Intelligent Automation and Soft Computing","volume":"2 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Prevention of Runtime Malware Injection Attack in Cloud Using Unsupervised Learning\",\"authors\":\"M. Prabhavathy, S. Umamaheswari\",\"doi\":\"10.32604/iasc.2022.018257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cloud computing utilizes various Internet-based technologies to enhance the Internet user experience. Cloud systems are on the rise, as this technology has completely revolutionized the digital industry. Currently, many users rely on cloud-based solutions to acquire business information and knowledge. As a result, cloud computing services such as SaaS and PaaS store a warehouse of sensitive and valuable information, which has turned the cloud systems into the obvious target for many malware creators and hackers. These malicious attackers attempt to gain illegal access to a myriad of valuable information such as user personal information, password, credit/debit card numbers, etc., from systems as the unsecured e-learning ones. As an important part of cloud services, security is needed to protect business customers and users from unauthorized threats. This paper aims to identify malware that attacks cloud-based software solutions using an unsupervised learning model with fixed-weight Hamming and Mexiannet. Different types of attack methodologies and various ways of malicious instructions targeting unknown files in cloud services are investigated. The result and analysis in this study provide an evolution of the unsupervised learning detection algorithm with an accuracy of 94.05%.\",\"PeriodicalId\":50357,\"journal\":{\"name\":\"Intelligent Automation and Soft Computing\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligent Automation and Soft Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.32604/iasc.2022.018257\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Automation and Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.32604/iasc.2022.018257","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
Prevention of Runtime Malware Injection Attack in Cloud Using Unsupervised Learning
Cloud computing utilizes various Internet-based technologies to enhance the Internet user experience. Cloud systems are on the rise, as this technology has completely revolutionized the digital industry. Currently, many users rely on cloud-based solutions to acquire business information and knowledge. As a result, cloud computing services such as SaaS and PaaS store a warehouse of sensitive and valuable information, which has turned the cloud systems into the obvious target for many malware creators and hackers. These malicious attackers attempt to gain illegal access to a myriad of valuable information such as user personal information, password, credit/debit card numbers, etc., from systems as the unsecured e-learning ones. As an important part of cloud services, security is needed to protect business customers and users from unauthorized threats. This paper aims to identify malware that attacks cloud-based software solutions using an unsupervised learning model with fixed-weight Hamming and Mexiannet. Different types of attack methodologies and various ways of malicious instructions targeting unknown files in cloud services are investigated. The result and analysis in this study provide an evolution of the unsupervised learning detection algorithm with an accuracy of 94.05%.
期刊介绍:
An International Journal seeks to provide a common forum for the dissemination of accurate results about the world of intelligent automation, artificial intelligence, computer science, control, intelligent data science, modeling and systems engineering. It is intended that the articles published in the journal will encompass both the short and the long term effects of soft computing and other related fields such as robotics, control, computer, vision, speech recognition, pattern recognition, data mining, big data, data analytics, machine intelligence, cyber security and deep learning. It further hopes it will address the existing and emerging relationships between automation, systems engineering, system of systems engineering and soft computing. The journal will publish original and survey papers on artificial intelligence, intelligent automation and computer engineering with an emphasis on current and potential applications of soft computing. It will have a broad interest in all engineering disciplines, computer science, and related technological fields such as medicine, biology operations research, technology management, agriculture and information technology.