上临界维数以上的多数选民模型的有限尺度

IF 0.9 4区 物理与天体物理 Q4 PHYSICS, CONDENSED MATTER
Christophe Chatelain
{"title":"上临界维数以上的多数选民模型的有限尺度","authors":"Christophe Chatelain","doi":"10.5488/CMP.26.13202","DOIUrl":null,"url":null,"abstract":"The majority-voter model is studied by Monte Carlo simulations on hypercubic lattices of dimension d = 2 to 7 with periodic boundary conditions. The critical exponents associated to the finite-size scaling of the magnetic susceptibility are shown to be compatible with those of the Ising model. At dimension d = 4, the numerical data are compatible with the presence of multiplicative logarithmic corrections. For d ≥ 5, the estimates of the exponents are close to the prediction d/2 when taking into account the dangerous irrelevant variable at the Gaussian fixed point. Moreover, the universal values of the Binder cumulant are also compatible with those of the Ising model. This indicates that the upper critical dimension of the majority-voter model is not dc = 6 as claimed in the literature, but dc = 4 like the equilibrium Ising model.","PeriodicalId":10528,"journal":{"name":"Condensed Matter Physics","volume":"4 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite-size scaling of the majority-voter model above the upper critical dimension\",\"authors\":\"Christophe Chatelain\",\"doi\":\"10.5488/CMP.26.13202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The majority-voter model is studied by Monte Carlo simulations on hypercubic lattices of dimension d = 2 to 7 with periodic boundary conditions. The critical exponents associated to the finite-size scaling of the magnetic susceptibility are shown to be compatible with those of the Ising model. At dimension d = 4, the numerical data are compatible with the presence of multiplicative logarithmic corrections. For d ≥ 5, the estimates of the exponents are close to the prediction d/2 when taking into account the dangerous irrelevant variable at the Gaussian fixed point. Moreover, the universal values of the Binder cumulant are also compatible with those of the Ising model. This indicates that the upper critical dimension of the majority-voter model is not dc = 6 as claimed in the literature, but dc = 4 like the equilibrium Ising model.\",\"PeriodicalId\":10528,\"journal\":{\"name\":\"Condensed Matter Physics\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Condensed Matter Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.5488/CMP.26.13202\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Condensed Matter Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.5488/CMP.26.13202","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

通过蒙特卡罗模拟,研究了具有周期边界条件的d = 2 ~ 7维超立方晶格上的多数选民模型。磁化率有限尺度的临界指数与Ising模型的临界指数一致。在维数d = 4时,数值数据与乘法对数修正的存在是相容的。当d≥5时,考虑高斯不动点处危险不相关变量,指数估计值接近预测值d/2。此外,Binder累积量的普适值也与Ising模型的普适值相容。这表明多数选民模型的上临界维数不是文献中所说的dc = 6,而是与均衡Ising模型一样的dc = 4。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite-size scaling of the majority-voter model above the upper critical dimension
The majority-voter model is studied by Monte Carlo simulations on hypercubic lattices of dimension d = 2 to 7 with periodic boundary conditions. The critical exponents associated to the finite-size scaling of the magnetic susceptibility are shown to be compatible with those of the Ising model. At dimension d = 4, the numerical data are compatible with the presence of multiplicative logarithmic corrections. For d ≥ 5, the estimates of the exponents are close to the prediction d/2 when taking into account the dangerous irrelevant variable at the Gaussian fixed point. Moreover, the universal values of the Binder cumulant are also compatible with those of the Ising model. This indicates that the upper critical dimension of the majority-voter model is not dc = 6 as claimed in the literature, but dc = 4 like the equilibrium Ising model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Condensed Matter Physics
Condensed Matter Physics 物理-物理:凝聚态物理
CiteScore
1.10
自引率
16.70%
发文量
17
审稿时长
1 months
期刊介绍: Condensed Matter Physics contains original and review articles in the field of statistical mechanics and thermodynamics of equilibrium and nonequilibrium processes, relativistic mechanics of interacting particle systems.The main attention is paid to physics of solid, liquid and amorphous systems, phase equilibria and phase transitions, thermal, structural, electric, magnetic and optical properties of condensed matter. Condensed Matter Physics is published quarterly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信