用广义有限差分法求解二维和三维Eikonal方程

IF 0.9 Q3 MATHEMATICS, APPLIED
Eduardo Salete, Jesús Flores, Ángel García, Mihaela Negreanu, Antonio M. Vargas, Francisco Ureña
{"title":"用广义有限差分法求解二维和三维Eikonal方程","authors":"Eduardo Salete,&nbsp;Jesús Flores,&nbsp;Ángel García,&nbsp;Mihaela Negreanu,&nbsp;Antonio M. Vargas,&nbsp;Francisco Ureña","doi":"10.1002/cmm4.1203","DOIUrl":null,"url":null,"abstract":"<p>In this article we propose an implementation, for irregular cloud of points, of the meshless method called generalized finite difference method to solve the fully nonlinear Eikonal equation in 2D and 3D. We obtain the explicit formulas for derivatives and solve the system of nonlinear equations using the Newton–Raphson method to obtain the approximate numerical values of the function for the discretization of the domain. It is also shown that the approximation of the scheme used is of second order. Finally, we provide several examples of its application over irregular domains in order to test accuracy of the scheme, as well as comparison with order numerical methods.</p>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"3 6","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmm4.1203","citationCount":"0","resultStr":"{\"title\":\"Solving Eikonal equation in 2D and 3D by generalized finite difference method\",\"authors\":\"Eduardo Salete,&nbsp;Jesús Flores,&nbsp;Ángel García,&nbsp;Mihaela Negreanu,&nbsp;Antonio M. Vargas,&nbsp;Francisco Ureña\",\"doi\":\"10.1002/cmm4.1203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article we propose an implementation, for irregular cloud of points, of the meshless method called generalized finite difference method to solve the fully nonlinear Eikonal equation in 2D and 3D. We obtain the explicit formulas for derivatives and solve the system of nonlinear equations using the Newton–Raphson method to obtain the approximate numerical values of the function for the discretization of the domain. It is also shown that the approximation of the scheme used is of second order. Finally, we provide several examples of its application over irregular domains in order to test accuracy of the scheme, as well as comparison with order numerical methods.</p>\",\"PeriodicalId\":100308,\"journal\":{\"name\":\"Computational and Mathematical Methods\",\"volume\":\"3 6\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cmm4.1203\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Mathematical Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cmm4.1203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmm4.1203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种求解二维和三维全非线性Eikonal方程的无网格方法——广义有限差分法,用于求解不规则点云。我们得到了导数的显式公式,并利用牛顿-拉夫逊方法求解了非线性方程组,得到了函数的近似数值,从而实现了域的离散化。还证明了所采用格式的近似是二阶的。最后,我们给出了它在不规则域上的几个应用实例,以检验该方案的准确性,并与顺序数值方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solving Eikonal equation in 2D and 3D by generalized finite difference method

In this article we propose an implementation, for irregular cloud of points, of the meshless method called generalized finite difference method to solve the fully nonlinear Eikonal equation in 2D and 3D. We obtain the explicit formulas for derivatives and solve the system of nonlinear equations using the Newton–Raphson method to obtain the approximate numerical values of the function for the discretization of the domain. It is also shown that the approximation of the scheme used is of second order. Finally, we provide several examples of its application over irregular domains in order to test accuracy of the scheme, as well as comparison with order numerical methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信