低机械指数下的声穿孔

A. Delalande, S. Kotopoulis, T. Rovers, C. Pichon, M. Postema
{"title":"低机械指数下的声穿孔","authors":"A. Delalande, S. Kotopoulis, T. Rovers, C. Pichon, M. Postema","doi":"10.1179/1758897911Y.0000000001","DOIUrl":null,"url":null,"abstract":"AbstractThe purpose of this study was to investigate the physical mechanisms of sonoporation, in order to understand and improve ultrasound-assisted drug and gene delivery. Sonoporation is the transient permeabilisation and resealing of a cell membrane with the help of ultrasound and/or an ultrasound contrast agent, allowing for the trans-membrane delivery and cellular uptake of macromolecules between 10 kDa and 3 MDa. The authors studied the behaviour of ultrasound contrast agent microbubbles near cancer cells at low acoustic amplitudes. After administering an ultrasound contrast agent, HeLa cells were subjected to 6·6 MHz ultrasound with a mechanical index of 0·2 and observed with a high-speed camera. Microbubbles were seen to enter cells and rapidly dissolve. The quick dissolution after entering suggests that the microbubbles lose (part of) their shell while entering. The authors have demonstrated that lipid-shelled microbubbles can be forced to enter cells at a low mechanical index. Hence, if a therap...","PeriodicalId":88410,"journal":{"name":"Bubble science engineering and technology","volume":"28 1","pages":"3-12"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":"{\"title\":\"Sonoporation at a low mechanical index\",\"authors\":\"A. Delalande, S. Kotopoulis, T. Rovers, C. Pichon, M. Postema\",\"doi\":\"10.1179/1758897911Y.0000000001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractThe purpose of this study was to investigate the physical mechanisms of sonoporation, in order to understand and improve ultrasound-assisted drug and gene delivery. Sonoporation is the transient permeabilisation and resealing of a cell membrane with the help of ultrasound and/or an ultrasound contrast agent, allowing for the trans-membrane delivery and cellular uptake of macromolecules between 10 kDa and 3 MDa. The authors studied the behaviour of ultrasound contrast agent microbubbles near cancer cells at low acoustic amplitudes. After administering an ultrasound contrast agent, HeLa cells were subjected to 6·6 MHz ultrasound with a mechanical index of 0·2 and observed with a high-speed camera. Microbubbles were seen to enter cells and rapidly dissolve. The quick dissolution after entering suggests that the microbubbles lose (part of) their shell while entering. The authors have demonstrated that lipid-shelled microbubbles can be forced to enter cells at a low mechanical index. Hence, if a therap...\",\"PeriodicalId\":88410,\"journal\":{\"name\":\"Bubble science engineering and technology\",\"volume\":\"28 1\",\"pages\":\"3-12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bubble science engineering and technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1179/1758897911Y.0000000001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bubble science engineering and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1179/1758897911Y.0000000001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55

摘要

摘要本研究旨在探讨超声作用的物理机制,以了解和改进超声辅助药物和基因传递。超声穿孔是在超声和/或超声造影剂的帮助下,细胞膜的瞬间渗透和再密封,允许跨膜传递和细胞摄取10 kDa至3 MDa之间的大分子。作者研究了超声造影剂微泡在低声幅下靠近癌细胞的行为。给予超声造影剂后,对HeLa细胞进行6·6 MHz超声,机械指数为0.2,并在高速相机下观察。微泡进入细胞并迅速溶解。进入后的快速溶解表明微泡在进入时失去了(部分)外壳。作者已经证明,脂质壳微泡可以在低机械指数下被迫进入细胞。因此,如果一种疗法……
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sonoporation at a low mechanical index
AbstractThe purpose of this study was to investigate the physical mechanisms of sonoporation, in order to understand and improve ultrasound-assisted drug and gene delivery. Sonoporation is the transient permeabilisation and resealing of a cell membrane with the help of ultrasound and/or an ultrasound contrast agent, allowing for the trans-membrane delivery and cellular uptake of macromolecules between 10 kDa and 3 MDa. The authors studied the behaviour of ultrasound contrast agent microbubbles near cancer cells at low acoustic amplitudes. After administering an ultrasound contrast agent, HeLa cells were subjected to 6·6 MHz ultrasound with a mechanical index of 0·2 and observed with a high-speed camera. Microbubbles were seen to enter cells and rapidly dissolve. The quick dissolution after entering suggests that the microbubbles lose (part of) their shell while entering. The authors have demonstrated that lipid-shelled microbubbles can be forced to enter cells at a low mechanical index. Hence, if a therap...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信