一种基于轻线性逻辑的PSPACE类型系统

Q4 Economics, Econometrics and Finance
Lucien Capedevielle
{"title":"一种基于轻线性逻辑的PSPACE类型系统","authors":"Lucien Capedevielle","doi":"10.4204/EPTCS.75.4","DOIUrl":null,"url":null,"abstract":"We present a polymorphic type system for lambda calculus ensuring that well-typed programs can be executed in polynomial space: dual light affine logic with booleans (DLALB). \nTo build DLALB we start from DLAL (which has a simple type language with a linear and an intuitionistic type arrow, as well as one modality) which characterizes FPTIME functions. In order to extend its expressiveness we add two boolean constants and a conditional constructor in the same way as with the system STAB. \nWe show that the value of a well-typed term can be computed by an alternating machine in polynomial time, thus such a term represents a program of PSPACE (given that PSPACE = APTIME). \nWe also prove that all polynomial space decision functions can be represented in DLALB. \nTherefore DLALB characterizes PSPACE predicates.","PeriodicalId":35380,"journal":{"name":"CESifo DICE Report","volume":"41 1","pages":"33-46"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A type system for PSPACE derived from light linear logic\",\"authors\":\"Lucien Capedevielle\",\"doi\":\"10.4204/EPTCS.75.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a polymorphic type system for lambda calculus ensuring that well-typed programs can be executed in polynomial space: dual light affine logic with booleans (DLALB). \\nTo build DLALB we start from DLAL (which has a simple type language with a linear and an intuitionistic type arrow, as well as one modality) which characterizes FPTIME functions. In order to extend its expressiveness we add two boolean constants and a conditional constructor in the same way as with the system STAB. \\nWe show that the value of a well-typed term can be computed by an alternating machine in polynomial time, thus such a term represents a program of PSPACE (given that PSPACE = APTIME). \\nWe also prove that all polynomial space decision functions can be represented in DLALB. \\nTherefore DLALB characterizes PSPACE predicates.\",\"PeriodicalId\":35380,\"journal\":{\"name\":\"CESifo DICE Report\",\"volume\":\"41 1\",\"pages\":\"33-46\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CESifo DICE Report\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.75.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Economics, Econometrics and Finance\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CESifo DICE Report","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.75.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种多态类型系统,用于λ演算,以确保类型良好的程序可以在多项式空间中执行:带布尔值的对偶轻仿射逻辑(dllb)。为了构建DLALB,我们从DLAL开始(它有一个简单的类型语言,带有线性和直观的类型箭头,以及一个模态),它是FPTIME函数的特征。为了扩展其表达性,我们以与系统STAB相同的方式添加了两个布尔常量和一个条件构造函数。我们证明了一个类型良好的项的值可以在多项式时间内由交替机器计算,因此这样的项表示PSPACE的一个程序(假设PSPACE = APTIME)。我们还证明了所有多项式空间决策函数都可以在DLALB中表示。因此,DLALB是PSPACE谓词的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A type system for PSPACE derived from light linear logic
We present a polymorphic type system for lambda calculus ensuring that well-typed programs can be executed in polynomial space: dual light affine logic with booleans (DLALB). To build DLALB we start from DLAL (which has a simple type language with a linear and an intuitionistic type arrow, as well as one modality) which characterizes FPTIME functions. In order to extend its expressiveness we add two boolean constants and a conditional constructor in the same way as with the system STAB. We show that the value of a well-typed term can be computed by an alternating machine in polynomial time, thus such a term represents a program of PSPACE (given that PSPACE = APTIME). We also prove that all polynomial space decision functions can be represented in DLALB. Therefore DLALB characterizes PSPACE predicates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CESifo DICE Report
CESifo DICE Report Economics, Econometrics and Finance-Economics and Econometrics
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信