由迹非递增映射和加性噪声诱导的量子单调度量

Koichi Yamagata
{"title":"由迹非递增映射和加性噪声诱导的量子单调度量","authors":"Koichi Yamagata","doi":"10.1063/1.5129058","DOIUrl":null,"url":null,"abstract":"Quantum monotone metric was introduced by Petz,and it was proved that quantum monotone metrics on the set of quantum states with trace one were characterized by operator monotone functions. Later, these were extended to monotone metrics on the set of positive operators whose traces are not always one based on completely positive, trace preserving (CPTP) maps. It was shown that these extended monotone metrics were characterized by operator monotone functions continuously parameterized by traces of positive operators,and did not have some ideal properties such as monotonicity and convexity with respect to the positive operators. In this paper, we introduce another extension of quantum monotone metrics which have monotonicity under completely positive, trace non-increasing (CPTNI) maps and additive noise. We prove that our extended monotone metrics can be characterized only by static operator monotone functions from few assumptions without assuming continuities of metrics. We show that our monotone metrics have some natural properties such as additivity of direct sum, convexity and monotonicity with respect to positive operators.","PeriodicalId":8469,"journal":{"name":"arXiv: Mathematical Physics","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Quantum monotone metrics induced from trace non-increasing maps and additive noise\",\"authors\":\"Koichi Yamagata\",\"doi\":\"10.1063/1.5129058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum monotone metric was introduced by Petz,and it was proved that quantum monotone metrics on the set of quantum states with trace one were characterized by operator monotone functions. Later, these were extended to monotone metrics on the set of positive operators whose traces are not always one based on completely positive, trace preserving (CPTP) maps. It was shown that these extended monotone metrics were characterized by operator monotone functions continuously parameterized by traces of positive operators,and did not have some ideal properties such as monotonicity and convexity with respect to the positive operators. In this paper, we introduce another extension of quantum monotone metrics which have monotonicity under completely positive, trace non-increasing (CPTNI) maps and additive noise. We prove that our extended monotone metrics can be characterized only by static operator monotone functions from few assumptions without assuming continuities of metrics. We show that our monotone metrics have some natural properties such as additivity of direct sum, convexity and monotonicity with respect to positive operators.\",\"PeriodicalId\":8469,\"journal\":{\"name\":\"arXiv: Mathematical Physics\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.5129058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5129058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

Petz引入了量子单调度量,并证明了具有迹1的量子态集合上的量子单调度量是由算子单调函数表征的。后来,这些被扩展到基于完全正、迹保持(CPTP)映射的迹不总是一条的正算子集合上的单调度量。证明了这些扩展单调度量是由正算子的迹连续参数化的算子单调函数表征的,并且对于正算子不具有单调性和凸性等理想性质。本文引入了在完全正、迹非递增映射和加性噪声下具有单调性的量子单调度量的另一种扩展。在不假设度量连续性的前提下,证明了扩展单调度量只能用静态算子单调函数来表征。我们证明了单调度量对于正算子具有直和可加性、凸性和单调性等自然性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum monotone metrics induced from trace non-increasing maps and additive noise
Quantum monotone metric was introduced by Petz,and it was proved that quantum monotone metrics on the set of quantum states with trace one were characterized by operator monotone functions. Later, these were extended to monotone metrics on the set of positive operators whose traces are not always one based on completely positive, trace preserving (CPTP) maps. It was shown that these extended monotone metrics were characterized by operator monotone functions continuously parameterized by traces of positive operators,and did not have some ideal properties such as monotonicity and convexity with respect to the positive operators. In this paper, we introduce another extension of quantum monotone metrics which have monotonicity under completely positive, trace non-increasing (CPTNI) maps and additive noise. We prove that our extended monotone metrics can be characterized only by static operator monotone functions from few assumptions without assuming continuities of metrics. We show that our monotone metrics have some natural properties such as additivity of direct sum, convexity and monotonicity with respect to positive operators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信