F. J. Herranz, Á. Ballesteros, I. Gutierrez-Sagredo, M. Santander
{"title":"Cayley—Klein Poisson齐次空间","authors":"F. J. Herranz, Á. Ballesteros, I. Gutierrez-Sagredo, M. Santander","doi":"10.7546/giq-20-2019-161-183","DOIUrl":null,"url":null,"abstract":"The nine two-dimensional Cayley-Klein geometries are firstly reviewed by following a graded contraction approach. Each geometry is considered as a set of three symmetrical homogeneous spaces (of points and two kinds of lines), in such a manner that the graded contraction parameters determine their curvature and signature. Secondly, new Poisson homogeneous spaces are constructed by making use of certain Poisson-Lie structures on the corresponding motion groups. Therefore, the quantization of these spaces provides noncommutative analogues of the Cayley-Klein geometries. The kinematical interpretation for the semi-Riemannian and pseudo-Riemannian Cayley-Klein geometries is emphasized, since they are just Newtonian and Lorentzian spacetimes of constant curvature.","PeriodicalId":53425,"journal":{"name":"Geometry, Integrability and Quantization","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Cayley--Klein Poisson Homogeneous Spaces\",\"authors\":\"F. J. Herranz, Á. Ballesteros, I. Gutierrez-Sagredo, M. Santander\",\"doi\":\"10.7546/giq-20-2019-161-183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The nine two-dimensional Cayley-Klein geometries are firstly reviewed by following a graded contraction approach. Each geometry is considered as a set of three symmetrical homogeneous spaces (of points and two kinds of lines), in such a manner that the graded contraction parameters determine their curvature and signature. Secondly, new Poisson homogeneous spaces are constructed by making use of certain Poisson-Lie structures on the corresponding motion groups. Therefore, the quantization of these spaces provides noncommutative analogues of the Cayley-Klein geometries. The kinematical interpretation for the semi-Riemannian and pseudo-Riemannian Cayley-Klein geometries is emphasized, since they are just Newtonian and Lorentzian spacetimes of constant curvature.\",\"PeriodicalId\":53425,\"journal\":{\"name\":\"Geometry, Integrability and Quantization\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry, Integrability and Quantization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/giq-20-2019-161-183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry, Integrability and Quantization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/giq-20-2019-161-183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
The nine two-dimensional Cayley-Klein geometries are firstly reviewed by following a graded contraction approach. Each geometry is considered as a set of three symmetrical homogeneous spaces (of points and two kinds of lines), in such a manner that the graded contraction parameters determine their curvature and signature. Secondly, new Poisson homogeneous spaces are constructed by making use of certain Poisson-Lie structures on the corresponding motion groups. Therefore, the quantization of these spaces provides noncommutative analogues of the Cayley-Klein geometries. The kinematical interpretation for the semi-Riemannian and pseudo-Riemannian Cayley-Klein geometries is emphasized, since they are just Newtonian and Lorentzian spacetimes of constant curvature.