{"title":"受限等距性质常数的信息论下界","authors":"Gen Li, Jingkai Yan, Yuantao Gu","doi":"10.1109/ICASSP.2019.8683742","DOIUrl":null,"url":null,"abstract":"Compressed sensing seeks to recover an unknown sparse vector from undersampled rate measurements. Since its introduction, there have been enormous works on compressed sensing that develop efficient algorithms for sparse signal recovery. The restricted isometry property (RIP) has become the dominant tool used for the analysis of exact reconstruction from seemingly undersampled measurements. Although the upper bound of the RIP constant has been studied extensively, as far as we know, the result is missing for the lower bound. In this work, we first present a tight lower bound for the RIP constant, filling the gap there. The lower bound is at the same order as the upper bound for the RIP constant. Moreover, we also show that our lower bound is close to the upper bound by numerical simulations. Our bound on the RIP constant provides an information-theoretic lower bound about the sampling rate for the first time, which is the essential question for practitioners.","PeriodicalId":13203,"journal":{"name":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"25 1","pages":"5297-5301"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Information Theoretic Lower Bound of Restricted Isometry Property Constant\",\"authors\":\"Gen Li, Jingkai Yan, Yuantao Gu\",\"doi\":\"10.1109/ICASSP.2019.8683742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compressed sensing seeks to recover an unknown sparse vector from undersampled rate measurements. Since its introduction, there have been enormous works on compressed sensing that develop efficient algorithms for sparse signal recovery. The restricted isometry property (RIP) has become the dominant tool used for the analysis of exact reconstruction from seemingly undersampled measurements. Although the upper bound of the RIP constant has been studied extensively, as far as we know, the result is missing for the lower bound. In this work, we first present a tight lower bound for the RIP constant, filling the gap there. The lower bound is at the same order as the upper bound for the RIP constant. Moreover, we also show that our lower bound is close to the upper bound by numerical simulations. Our bound on the RIP constant provides an information-theoretic lower bound about the sampling rate for the first time, which is the essential question for practitioners.\",\"PeriodicalId\":13203,\"journal\":{\"name\":\"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"25 1\",\"pages\":\"5297-5301\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2019.8683742\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2019.8683742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Information Theoretic Lower Bound of Restricted Isometry Property Constant
Compressed sensing seeks to recover an unknown sparse vector from undersampled rate measurements. Since its introduction, there have been enormous works on compressed sensing that develop efficient algorithms for sparse signal recovery. The restricted isometry property (RIP) has become the dominant tool used for the analysis of exact reconstruction from seemingly undersampled measurements. Although the upper bound of the RIP constant has been studied extensively, as far as we know, the result is missing for the lower bound. In this work, we first present a tight lower bound for the RIP constant, filling the gap there. The lower bound is at the same order as the upper bound for the RIP constant. Moreover, we also show that our lower bound is close to the upper bound by numerical simulations. Our bound on the RIP constant provides an information-theoretic lower bound about the sampling rate for the first time, which is the essential question for practitioners.