用第一性原理方法预测立方氧化铈的基本弹性性质

IF 18.6 1区 材料科学 Q1 MATERIALS SCIENCE, CERAMICS
J. Goldsby
{"title":"用第一性原理方法预测立方氧化铈的基本弹性性质","authors":"J. Goldsby","doi":"10.1155/2013/323018","DOIUrl":null,"url":null,"abstract":"Computational material methods were used to predict and investigate electrical and structural properties of cerium oxide (CeO2). Density functional theory was used to obtain the optimized crystal structure and simulate the material’s electronic and elastic responses. Oxygen to oxygen nearest neighbor distance is 2.628 A, while oxygen to cerium distance is calculated to be 2.276 A. The conduction band has a prominent set of bands, which exists between 6 and 17 eV. An indirect energy gap (6.04 eV) exists between the valence and conduction bands. The independent elastic constants allow a mechanical assessment on the suitability of cubic cerium oxide as a substrate for advanced electronic devices. The calculated results of phonon dispersion curves are also given.","PeriodicalId":14862,"journal":{"name":"Journal of Advanced Ceramics","volume":"GE-23 1","pages":"1-4"},"PeriodicalIF":18.6000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Basic Elastic Properties Predictions of Cubic Cerium Oxide Using First-Principles Methods\",\"authors\":\"J. Goldsby\",\"doi\":\"10.1155/2013/323018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computational material methods were used to predict and investigate electrical and structural properties of cerium oxide (CeO2). Density functional theory was used to obtain the optimized crystal structure and simulate the material’s electronic and elastic responses. Oxygen to oxygen nearest neighbor distance is 2.628 A, while oxygen to cerium distance is calculated to be 2.276 A. The conduction band has a prominent set of bands, which exists between 6 and 17 eV. An indirect energy gap (6.04 eV) exists between the valence and conduction bands. The independent elastic constants allow a mechanical assessment on the suitability of cubic cerium oxide as a substrate for advanced electronic devices. The calculated results of phonon dispersion curves are also given.\",\"PeriodicalId\":14862,\"journal\":{\"name\":\"Journal of Advanced Ceramics\",\"volume\":\"GE-23 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":18.6000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Ceramics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1155/2013/323018\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Ceramics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1155/2013/323018","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 14

摘要

采用计算材料方法预测和研究了氧化铈(CeO2)的电学和结构性能。利用密度泛函理论得到了优化后的晶体结构,并模拟了材料的电子和弹性响应。氧到氧的最近邻距离为2.628 A,而氧到铈的距离计算为2.276 A。导带有一组突出的带,存在于6 ~ 17 eV之间。在价带和导带之间存在间接能隙(6.04 eV)。独立的弹性常数允许对立方氧化铈作为先进电子器件衬底的适用性进行力学评估。给出了声子色散曲线的计算结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Basic Elastic Properties Predictions of Cubic Cerium Oxide Using First-Principles Methods
Computational material methods were used to predict and investigate electrical and structural properties of cerium oxide (CeO2). Density functional theory was used to obtain the optimized crystal structure and simulate the material’s electronic and elastic responses. Oxygen to oxygen nearest neighbor distance is 2.628 A, while oxygen to cerium distance is calculated to be 2.276 A. The conduction band has a prominent set of bands, which exists between 6 and 17 eV. An indirect energy gap (6.04 eV) exists between the valence and conduction bands. The independent elastic constants allow a mechanical assessment on the suitability of cubic cerium oxide as a substrate for advanced electronic devices. The calculated results of phonon dispersion curves are also given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Advanced Ceramics
Journal of Advanced Ceramics MATERIALS SCIENCE, CERAMICS-
CiteScore
21.00
自引率
10.70%
发文量
290
审稿时长
14 days
期刊介绍: Journal of Advanced Ceramics is a single-blind peer-reviewed, open access international journal published on behalf of the State Key Laboratory of New Ceramics and Fine Processing (Tsinghua University, China) and the Advanced Ceramics Division of the Chinese Ceramic Society. Journal of Advanced Ceramics provides a forum for publishing original research papers, rapid communications, and commissioned reviews relating to advanced ceramic materials in the forms of particulates, dense or porous bodies, thin/thick films or coatings and laminated, graded and composite structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信