基于最陡下降法求解非线性方程

Tianyou Zhang
{"title":"基于最陡下降法求解非线性方程","authors":"Tianyou Zhang","doi":"10.1109/ICIC.2011.107","DOIUrl":null,"url":null,"abstract":"This paper concerns with the problem of solving non-linear equation. It is shown that solving non-linear equation is equivalent to the evaluation extremum of funtion. In terms of unconstrained optimization using steepest descent method, we propose an algorithm for solving non-linear equation. It is shown that the proposed algorithm has the same convergence rate as the secant method. Several numerical experiments are also provided to demonstrate the effect of the proposed algorithm.","PeriodicalId":6397,"journal":{"name":"2011 Fourth International Conference on Information and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Solving Non-linear Equation Based on Steepest Descent Method\",\"authors\":\"Tianyou Zhang\",\"doi\":\"10.1109/ICIC.2011.107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper concerns with the problem of solving non-linear equation. It is shown that solving non-linear equation is equivalent to the evaluation extremum of funtion. In terms of unconstrained optimization using steepest descent method, we propose an algorithm for solving non-linear equation. It is shown that the proposed algorithm has the same convergence rate as the secant method. Several numerical experiments are also provided to demonstrate the effect of the proposed algorithm.\",\"PeriodicalId\":6397,\"journal\":{\"name\":\"2011 Fourth International Conference on Information and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Fourth International Conference on Information and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIC.2011.107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fourth International Conference on Information and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIC.2011.107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文研究求解非线性方程的问题。证明了求解非线性方程等价于函数的求极值。在最陡下降法无约束优化方面,提出了一种求解非线性方程的算法。结果表明,该算法具有与割线法相同的收敛速度。数值实验验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solving Non-linear Equation Based on Steepest Descent Method
This paper concerns with the problem of solving non-linear equation. It is shown that solving non-linear equation is equivalent to the evaluation extremum of funtion. In terms of unconstrained optimization using steepest descent method, we propose an algorithm for solving non-linear equation. It is shown that the proposed algorithm has the same convergence rate as the secant method. Several numerical experiments are also provided to demonstrate the effect of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信