{"title":"费托合成合成气质量的优化","authors":"A. A. Rabah","doi":"10.1155/2023/1842187","DOIUrl":null,"url":null,"abstract":"<jats:p>While fossil oil reserves have been receding, the demand for diesel and gasoline has been growing. In recent years, syngas of biomass origin has been emerging as a viable feedstock for Fischer-Tropsch (FT) synthesis, a process for manufacturing synthetic gasoline and diesel. This paper reports the optimization of syngas quality to match the FT synthesis requirement. The optimization model maximizes the thermal efficiency under the constraint of <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <msub>\n <mrow>\n <mi>H</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n <mo>/</mo>\n <mi>C</mi>\n <mi>O</mi>\n <mo>≥</mo>\n <mn>2.15</mn>\n </math>\n </jats:inline-formula> and operating conditions of equivalent ratio (<jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mi>E</mi>\n <mi>R</mi>\n <mo>=</mo>\n <mn>0.0</mn>\n </math>\n </jats:inline-formula>-1.0), steam to biomass ratio (<jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <mi>S</mi>\n <mi>B</mi>\n <mo>=</mo>\n <mn>0.0</mn>\n </math>\n </jats:inline-formula>-5.0), and gasification temperature (<jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M4\">\n <msub>\n <mrow>\n <mi>T</mi>\n </mrow>\n <mrow>\n <mi>g</mi>\n </mrow>\n </msub>\n <mo>=</mo>\n <mn>500</mn>\n </math>\n </jats:inline-formula>°C-1300°C). The optimization model is executed using the optimization section of the Model Analysis Tools of the Aspen Plus simulator. The model is tested using eleven (11) types of municipal solid waste (MSW). The optimum operating conditions under which the objective function and the constraint are satisfied are <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M5\">\n <mi>E</mi>\n <mi>R</mi>\n <mo>=</mo>\n <mn>0</mn>\n </math>\n </jats:inline-formula>, <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M6\">\n <mi>S</mi>\n <mi>B</mi>\n <mo>=</mo>\n <mn>0.66</mn>\n </math>\n </jats:inline-formula>-1.22, and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M7\">\n <msub>\n <mrow>\n <mi>T</mi>\n </mrow>\n <mrow>\n <mi>g</mi>\n </mrow>\n </msub>\n <mo>=</mo>\n <mn>679</mn>\n </math>\n </jats:inline-formula>-763°C. Under optimal operating conditions, the syngas quality is <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M8\">\n <msub>\n <mrow>\n <mi>H</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n <mo>=</mo>\n <mn>52.38</mn>\n </math>\n </jats:inline-formula>-58.67 mole percent, lower heating value <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M9\">\n <mfenced open=\"(\" close=\")\">\n <mrow>\n <mi>L</mi>\n <mi>H</mi>\n <mi>V</mi>\n </mrow>\n </mfenced>\n <mo>=</mo>\n <mn>12.55</mn>\n </math>\n </jats:inline-formula>-17.15 MJ/kg, and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M10\">\n <msub>\n <mrow>\n <mi>N</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n <mo>=</mo>\n <mn>0.38</mn>\n </math>\n </jats:inline-formula>-2.33 mole percent. From an economic point of view, 12.98% to 33.12% of biomass is used as fuel for steam generation, drying, and pyrolysis. The generalized optimization model reported could be extended to any other type of biomass and coal.</jats:p>","PeriodicalId":30572,"journal":{"name":"Journal of Energy","volume":"115 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of Syngas Quality for Fischer-Tropsch Synthesis\",\"authors\":\"A. A. Rabah\",\"doi\":\"10.1155/2023/1842187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>While fossil oil reserves have been receding, the demand for diesel and gasoline has been growing. In recent years, syngas of biomass origin has been emerging as a viable feedstock for Fischer-Tropsch (FT) synthesis, a process for manufacturing synthetic gasoline and diesel. This paper reports the optimization of syngas quality to match the FT synthesis requirement. The optimization model maximizes the thermal efficiency under the constraint of <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M1\\\">\\n <msub>\\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msub>\\n <mo>/</mo>\\n <mi>C</mi>\\n <mi>O</mi>\\n <mo>≥</mo>\\n <mn>2.15</mn>\\n </math>\\n </jats:inline-formula> and operating conditions of equivalent ratio (<jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M2\\\">\\n <mi>E</mi>\\n <mi>R</mi>\\n <mo>=</mo>\\n <mn>0.0</mn>\\n </math>\\n </jats:inline-formula>-1.0), steam to biomass ratio (<jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M3\\\">\\n <mi>S</mi>\\n <mi>B</mi>\\n <mo>=</mo>\\n <mn>0.0</mn>\\n </math>\\n </jats:inline-formula>-5.0), and gasification temperature (<jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M4\\\">\\n <msub>\\n <mrow>\\n <mi>T</mi>\\n </mrow>\\n <mrow>\\n <mi>g</mi>\\n </mrow>\\n </msub>\\n <mo>=</mo>\\n <mn>500</mn>\\n </math>\\n </jats:inline-formula>°C-1300°C). The optimization model is executed using the optimization section of the Model Analysis Tools of the Aspen Plus simulator. The model is tested using eleven (11) types of municipal solid waste (MSW). The optimum operating conditions under which the objective function and the constraint are satisfied are <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M5\\\">\\n <mi>E</mi>\\n <mi>R</mi>\\n <mo>=</mo>\\n <mn>0</mn>\\n </math>\\n </jats:inline-formula>, <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M6\\\">\\n <mi>S</mi>\\n <mi>B</mi>\\n <mo>=</mo>\\n <mn>0.66</mn>\\n </math>\\n </jats:inline-formula>-1.22, and <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M7\\\">\\n <msub>\\n <mrow>\\n <mi>T</mi>\\n </mrow>\\n <mrow>\\n <mi>g</mi>\\n </mrow>\\n </msub>\\n <mo>=</mo>\\n <mn>679</mn>\\n </math>\\n </jats:inline-formula>-763°C. Under optimal operating conditions, the syngas quality is <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M8\\\">\\n <msub>\\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msub>\\n <mo>=</mo>\\n <mn>52.38</mn>\\n </math>\\n </jats:inline-formula>-58.67 mole percent, lower heating value <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M9\\\">\\n <mfenced open=\\\"(\\\" close=\\\")\\\">\\n <mrow>\\n <mi>L</mi>\\n <mi>H</mi>\\n <mi>V</mi>\\n </mrow>\\n </mfenced>\\n <mo>=</mo>\\n <mn>12.55</mn>\\n </math>\\n </jats:inline-formula>-17.15 MJ/kg, and <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M10\\\">\\n <msub>\\n <mrow>\\n <mi>N</mi>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msub>\\n <mo>=</mo>\\n <mn>0.38</mn>\\n </math>\\n </jats:inline-formula>-2.33 mole percent. From an economic point of view, 12.98% to 33.12% of biomass is used as fuel for steam generation, drying, and pyrolysis. The generalized optimization model reported could be extended to any other type of biomass and coal.</jats:p>\",\"PeriodicalId\":30572,\"journal\":{\"name\":\"Journal of Energy\",\"volume\":\"115 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/1842187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/1842187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
虽然化石石油储量一直在减少,但对柴油和汽油的需求一直在增长。近年来,生物质合成气已成为一种可行的原料,用于费托合成(FT),一种制造合成汽油和柴油的工艺。本文报道了合成气质量的优化,以满足FT合成的要求。优化模型在H 2 / C O≥2.15且运行条件下热效率最大等效比(E R = 0.0 -1.0)、蒸汽与生物质比(S B = 0.0 -5.0)条件气化温度(T g = 500℃-1300℃)。使用Aspen Plus模拟器的模型分析工具的优化部分执行优化模型。该模型使用11种城市固体废物(MSW)进行了测试。满足目标函数和约束的最优工况为:E R = 0, S B = 0.66 -1.22,T = 679 ~ 763℃。在最佳操作条件下,合成气质量为h2 = 52.38 ~ 58.67摩尔%;低热值L H V = 12.55 ~ 17.15 MJ/kg;n2 = 0.38 -2.33摩尔百分比。从经济角度来看,12.98% ~ 33.12%的生物质用作蒸汽产生、干燥和热解的燃料。所建立的广义优化模型可以推广到其他类型的生物质和煤。
Optimization of Syngas Quality for Fischer-Tropsch Synthesis
While fossil oil reserves have been receding, the demand for diesel and gasoline has been growing. In recent years, syngas of biomass origin has been emerging as a viable feedstock for Fischer-Tropsch (FT) synthesis, a process for manufacturing synthetic gasoline and diesel. This paper reports the optimization of syngas quality to match the FT synthesis requirement. The optimization model maximizes the thermal efficiency under the constraint of and operating conditions of equivalent ratio (-1.0), steam to biomass ratio (-5.0), and gasification temperature (°C-1300°C). The optimization model is executed using the optimization section of the Model Analysis Tools of the Aspen Plus simulator. The model is tested using eleven (11) types of municipal solid waste (MSW). The optimum operating conditions under which the objective function and the constraint are satisfied are , -1.22, and -763°C. Under optimal operating conditions, the syngas quality is -58.67 mole percent, lower heating value -17.15 MJ/kg, and -2.33 mole percent. From an economic point of view, 12.98% to 33.12% of biomass is used as fuel for steam generation, drying, and pyrolysis. The generalized optimization model reported could be extended to any other type of biomass and coal.