穿孔域的范数解析收敛

Asymptot. Anal. Pub Date : 2017-06-19 DOI:10.3233/ASY-181481
K. Cherednichenko, P. Dondl, F. Rösler
{"title":"穿孔域的范数解析收敛","authors":"K. Cherednichenko, P. Dondl, F. Rösler","doi":"10.3233/ASY-181481","DOIUrl":null,"url":null,"abstract":"For several different boundary conditions (Dirichlet, Neumann, Robin), we prove norm-resolvent convergence for the operator $-\\Delta$ in the perforated domain $\\Omega\\setminus \\bigcup_{ i\\in 2\\varepsilon\\mathbb Z^d }B_{a_\\varepsilon}(i),$ $a_\\varepsilon\\ll\\varepsilon,$ to the limit operator $-\\Delta+\\mu_{\\iota}$ on $L^2(\\Omega)$, where $\\mu_\\iota\\in\\mathbb C$ is a constant depending on the choice of boundary conditions. \nThis is an improvement of previous results [Cioranescu & Murat. A Strange Term Coming From Nowhere, Progress in Nonlinear Differential Equations and Their Applications, 31, (1997)], [S. Kaizu. The Robin Problems on Domains with Many Tiny Holes. Pro c. Japan Acad., 61, Ser. A (1985)], which show strong resolvent convergence. In particular, our result implies Hausdorff convergence of the spectrum of the resolvent for the perforated domain problem.","PeriodicalId":8603,"journal":{"name":"Asymptot. Anal.","volume":"19 1","pages":"163-184"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Norm-resolvent convergence in perforated domains\",\"authors\":\"K. Cherednichenko, P. Dondl, F. Rösler\",\"doi\":\"10.3233/ASY-181481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For several different boundary conditions (Dirichlet, Neumann, Robin), we prove norm-resolvent convergence for the operator $-\\\\Delta$ in the perforated domain $\\\\Omega\\\\setminus \\\\bigcup_{ i\\\\in 2\\\\varepsilon\\\\mathbb Z^d }B_{a_\\\\varepsilon}(i),$ $a_\\\\varepsilon\\\\ll\\\\varepsilon,$ to the limit operator $-\\\\Delta+\\\\mu_{\\\\iota}$ on $L^2(\\\\Omega)$, where $\\\\mu_\\\\iota\\\\in\\\\mathbb C$ is a constant depending on the choice of boundary conditions. \\nThis is an improvement of previous results [Cioranescu & Murat. A Strange Term Coming From Nowhere, Progress in Nonlinear Differential Equations and Their Applications, 31, (1997)], [S. Kaizu. The Robin Problems on Domains with Many Tiny Holes. Pro c. Japan Acad., 61, Ser. A (1985)], which show strong resolvent convergence. In particular, our result implies Hausdorff convergence of the spectrum of the resolvent for the perforated domain problem.\",\"PeriodicalId\":8603,\"journal\":{\"name\":\"Asymptot. Anal.\",\"volume\":\"19 1\",\"pages\":\"163-184\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asymptot. Anal.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/ASY-181481\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptot. Anal.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ASY-181481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

对于几种不同的边界条件(Dirichlet, Neumann, Robin),我们证明了在孔洞域$\Omega\setminus \bigcup_{ i\in 2\varepsilon\mathbb Z^d }B_{a_\varepsilon}(i),$$a_\varepsilon\ll\varepsilon,$上的算子$-\Delta$到$L^2(\Omega)$上的极限算子$-\Delta+\mu_{\iota}$的范数解析收敛性,其中$\mu_\iota\in\mathbb C$是一个取决于边界条件选择的常数。这是对先前结果的改进[Cioranescu & Murat]。何建平,何建平。一个不知从何而来的奇怪项,非线性微分方程及其应用进展,31,(1997)[j], [S]。Kaizu。多微孔域上的Robin问题。日本学院教授,61岁,爵士。A(1985)],表现出较强的可解收敛性。特别地,我们的结果暗示了解的谱具有Hausdorff收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Norm-resolvent convergence in perforated domains
For several different boundary conditions (Dirichlet, Neumann, Robin), we prove norm-resolvent convergence for the operator $-\Delta$ in the perforated domain $\Omega\setminus \bigcup_{ i\in 2\varepsilon\mathbb Z^d }B_{a_\varepsilon}(i),$ $a_\varepsilon\ll\varepsilon,$ to the limit operator $-\Delta+\mu_{\iota}$ on $L^2(\Omega)$, where $\mu_\iota\in\mathbb C$ is a constant depending on the choice of boundary conditions. This is an improvement of previous results [Cioranescu & Murat. A Strange Term Coming From Nowhere, Progress in Nonlinear Differential Equations and Their Applications, 31, (1997)], [S. Kaizu. The Robin Problems on Domains with Many Tiny Holes. Pro c. Japan Acad., 61, Ser. A (1985)], which show strong resolvent convergence. In particular, our result implies Hausdorff convergence of the spectrum of the resolvent for the perforated domain problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信