基于语义签名查询视频事件的几个例子

M. Mazloom, A. Habibian, Cees G. M. Snoek
{"title":"基于语义签名查询视频事件的几个例子","authors":"M. Mazloom, A. Habibian, Cees G. M. Snoek","doi":"10.1145/2502081.2502160","DOIUrl":null,"url":null,"abstract":"We aim to query web video for complex events using only a handful of video query examples, where the standard approach learns a ranker from hundreds of examples. We consider a semantic signature representation, consisting of off-the-shelf concept detectors, to capture the variance in semantic appearance of events. Since it is unknown what similarity metric and query fusion to use in such an event retrieval setting, we perform three experiments on unconstrained web videos from the TRECVID event detection task. It reveals that: retrieval with semantic signatures using normalized correlation as similarity metric outperforms a low-level bag-of-words alternative, multiple queries are best combined using late fusion with an average operator, and event retrieval is preferred over event classification when less than eight positive video examples are available.","PeriodicalId":20448,"journal":{"name":"Proceedings of the 21st ACM international conference on Multimedia","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"Querying for video events by semantic signatures from few examples\",\"authors\":\"M. Mazloom, A. Habibian, Cees G. M. Snoek\",\"doi\":\"10.1145/2502081.2502160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We aim to query web video for complex events using only a handful of video query examples, where the standard approach learns a ranker from hundreds of examples. We consider a semantic signature representation, consisting of off-the-shelf concept detectors, to capture the variance in semantic appearance of events. Since it is unknown what similarity metric and query fusion to use in such an event retrieval setting, we perform three experiments on unconstrained web videos from the TRECVID event detection task. It reveals that: retrieval with semantic signatures using normalized correlation as similarity metric outperforms a low-level bag-of-words alternative, multiple queries are best combined using late fusion with an average operator, and event retrieval is preferred over event classification when less than eight positive video examples are available.\",\"PeriodicalId\":20448,\"journal\":{\"name\":\"Proceedings of the 21st ACM international conference on Multimedia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 21st ACM international conference on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2502081.2502160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2502081.2502160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

摘要

我们的目标是仅使用少数视频查询示例查询复杂事件的网络视频,其中标准方法从数百个示例中学习排名。我们考虑一个语义签名表示,由现成的概念检测器组成,以捕获事件语义外观的变化。由于未知在这样的事件检索设置中使用什么样的相似性度量和查询融合,我们对来自TRECVID事件检测任务的无约束web视频进行了三个实验。它表明:使用归一化相关性作为相似性度量的语义签名检索优于低级词袋替代方法,多个查询最好使用平均算子的后期融合组合,当可用的正面视频示例少于8个时,事件检索优于事件分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Querying for video events by semantic signatures from few examples
We aim to query web video for complex events using only a handful of video query examples, where the standard approach learns a ranker from hundreds of examples. We consider a semantic signature representation, consisting of off-the-shelf concept detectors, to capture the variance in semantic appearance of events. Since it is unknown what similarity metric and query fusion to use in such an event retrieval setting, we perform three experiments on unconstrained web videos from the TRECVID event detection task. It reveals that: retrieval with semantic signatures using normalized correlation as similarity metric outperforms a low-level bag-of-words alternative, multiple queries are best combined using late fusion with an average operator, and event retrieval is preferred over event classification when less than eight positive video examples are available.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信