基于新建立的蜗轮传动动力学模型的模态能量分析与动态响应

IF 1 4区 工程技术 Q4 MECHANICS
Ala Eddin Chakroun, A. Hammami, A. De-Juan, F. Chaari, Alfonso Fernández, F. Viadero, M. Haddar
{"title":"基于新建立的蜗轮传动动力学模型的模态能量分析与动态响应","authors":"Ala Eddin Chakroun, A. Hammami, A. De-Juan, F. Chaari, Alfonso Fernández, F. Viadero, M. Haddar","doi":"10.5802/CRMECA.80","DOIUrl":null,"url":null,"abstract":"In order to investigate the behaviour of worm drives, a new dynamic model, composed of two blocks, is established and used to extract numerical results. The tooth deflection of the worm drive, bearings, and wheels inertias are taken into consideration. Newmark solving method is applied to solve motion equations. The state of contact of teeth is what enables these signals to manifest themselves. Modal analysis is developed to investigate the different natural modes of the model. Furthermore, modal energetic analysis is used to understand the distribution of strain and kinetic energies. It is also applied to classify natural models into “teeth modes” and “bearing modes”. These two modes constitute two different frequency bands. The dynamic coefficient is measured simultaneously with the gradual increase of the turning speed of the motor. This allows for the evaluation of the overload of the system.","PeriodicalId":50997,"journal":{"name":"Comptes Rendus Mecanique","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2021-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Modal energetic analysis and dynamic response of worm gear drives with a new developed dynamic model\",\"authors\":\"Ala Eddin Chakroun, A. Hammami, A. De-Juan, F. Chaari, Alfonso Fernández, F. Viadero, M. Haddar\",\"doi\":\"10.5802/CRMECA.80\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to investigate the behaviour of worm drives, a new dynamic model, composed of two blocks, is established and used to extract numerical results. The tooth deflection of the worm drive, bearings, and wheels inertias are taken into consideration. Newmark solving method is applied to solve motion equations. The state of contact of teeth is what enables these signals to manifest themselves. Modal analysis is developed to investigate the different natural modes of the model. Furthermore, modal energetic analysis is used to understand the distribution of strain and kinetic energies. It is also applied to classify natural models into “teeth modes” and “bearing modes”. These two modes constitute two different frequency bands. The dynamic coefficient is measured simultaneously with the gradual increase of the turning speed of the motor. This allows for the evaluation of the overload of the system.\",\"PeriodicalId\":50997,\"journal\":{\"name\":\"Comptes Rendus Mecanique\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus Mecanique\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5802/CRMECA.80\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Mecanique","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5802/CRMECA.80","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 5

摘要

为了研究蜗杆传动的动态特性,建立了一种新的由两个块组成的动力学模型,并利用该模型提取了数值结果。考虑了蜗杆传动的齿挠度、轴承和车轮惯性。应用Newmark解法求解运动方程。牙齿接触的状态使这些信号能够表现出来。模态分析用于研究模型的不同自然模态。此外,采用模态能分析来了解应变和动能的分布。它也被用于将自然模型分类为“齿模式”和“轴承模式”。这两种模式构成了两个不同的频段。动态系数随电机转速的逐渐增大而同步测量。这允许对系统的过载进行评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modal energetic analysis and dynamic response of worm gear drives with a new developed dynamic model
In order to investigate the behaviour of worm drives, a new dynamic model, composed of two blocks, is established and used to extract numerical results. The tooth deflection of the worm drive, bearings, and wheels inertias are taken into consideration. Newmark solving method is applied to solve motion equations. The state of contact of teeth is what enables these signals to manifest themselves. Modal analysis is developed to investigate the different natural modes of the model. Furthermore, modal energetic analysis is used to understand the distribution of strain and kinetic energies. It is also applied to classify natural models into “teeth modes” and “bearing modes”. These two modes constitute two different frequency bands. The dynamic coefficient is measured simultaneously with the gradual increase of the turning speed of the motor. This allows for the evaluation of the overload of the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Comptes Rendus Mecanique
Comptes Rendus Mecanique 物理-力学
CiteScore
1.40
自引率
0.00%
发文量
0
审稿时长
12 months
期刊介绍: The Comptes rendus - Mécanique cover all fields of the discipline: Logic, Combinatorics, Number Theory, Group Theory, Mathematical Analysis, (Partial) Differential Equations, Geometry, Topology, Dynamical systems, Mathematical Physics, Mathematical Problems in Mechanics, Signal Theory, Mathematical Economics, … The journal publishes original and high-quality research articles. These can be in either in English or in French, with an abstract in both languages. An abridged version of the main text in the second language may also be included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信