无穷拟阵的一个Cantor-Bernstein定理

IF 0.4 Q4 MATHEMATICS, APPLIED
Attila Jo'o
{"title":"无穷拟阵的一个Cantor-Bernstein定理","authors":"Attila Jo'o","doi":"10.4310/joc.2023.v14.n2.a5","DOIUrl":null,"url":null,"abstract":". We give a common matroidal generalisation of ‘A Cantor-Bernstein theorem for paths in graphs’ by Diestel and Thomassen and ‘A Cantor-Bernstein-type theorem for spanning trees in infinite graphs’ by ourselves.","PeriodicalId":44683,"journal":{"name":"Journal of Combinatorics","volume":"53 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2020-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Cantor–Bernstein theorem for infinite matroids\",\"authors\":\"Attila Jo'o\",\"doi\":\"10.4310/joc.2023.v14.n2.a5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We give a common matroidal generalisation of ‘A Cantor-Bernstein theorem for paths in graphs’ by Diestel and Thomassen and ‘A Cantor-Bernstein-type theorem for spanning trees in infinite graphs’ by ourselves.\",\"PeriodicalId\":44683,\"journal\":{\"name\":\"Journal of Combinatorics\",\"volume\":\"53 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/joc.2023.v14.n2.a5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/joc.2023.v14.n2.a5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

. 我们给出了Diestel和Thomassen的“图中路径的Cantor-Bernstein定理”和“无限图中生成树的Cantor-Bernstein型定理”的一般矩阵推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Cantor–Bernstein theorem for infinite matroids
. We give a common matroidal generalisation of ‘A Cantor-Bernstein theorem for paths in graphs’ by Diestel and Thomassen and ‘A Cantor-Bernstein-type theorem for spanning trees in infinite graphs’ by ourselves.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Combinatorics
Journal of Combinatorics MATHEMATICS, APPLIED-
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信