使用上下文感知滤波估计血氧含量

Radoslav Ivanov, Nikolay A. Atanasov, James Weimer, M. Pajic, Allan F. Simpao, M. Rehman, George J. Pappas, Insup Lee
{"title":"使用上下文感知滤波估计血氧含量","authors":"Radoslav Ivanov, Nikolay A. Atanasov, James Weimer, M. Pajic, Allan F. Simpao, M. Rehman, George J. Pappas, Insup Lee","doi":"10.1109/ICCPS.2016.7479102","DOIUrl":null,"url":null,"abstract":"In this paper we address the problem of estimating the blood oxygen concentration in children during surgery. Currently, the oxygen content can only be measured through invasive means such as drawing blood from the patient. In this work, we attempt to perform estimation by only using other non-invasive measurements (e.g., fraction of oxygen in inspired air, volume of inspired air) collected during surgery. Although models mapping these measurements to blood oxygen content contain multiple parameters that vary widely across patients, the non-invasive measurements can be used to provide binary information about whether the oxygen concentration is rising or dropping. This information can then be incorporated in a context-aware filter that is used to combine regular continuous measurements with discrete detection events in order to improve estimation. We evaluate the filter using real- patient data collected over the last decade at the Children's Hospital of Philadelphia and show that it is a promising approach for the estimation of unobservable physiological variables.","PeriodicalId":6619,"journal":{"name":"2016 ACM/IEEE 7th International Conference on Cyber-Physical Systems (ICCPS)","volume":"31 1","pages":"1-10"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Estimation of Blood Oxygen Content Using Context-Aware Filtering\",\"authors\":\"Radoslav Ivanov, Nikolay A. Atanasov, James Weimer, M. Pajic, Allan F. Simpao, M. Rehman, George J. Pappas, Insup Lee\",\"doi\":\"10.1109/ICCPS.2016.7479102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we address the problem of estimating the blood oxygen concentration in children during surgery. Currently, the oxygen content can only be measured through invasive means such as drawing blood from the patient. In this work, we attempt to perform estimation by only using other non-invasive measurements (e.g., fraction of oxygen in inspired air, volume of inspired air) collected during surgery. Although models mapping these measurements to blood oxygen content contain multiple parameters that vary widely across patients, the non-invasive measurements can be used to provide binary information about whether the oxygen concentration is rising or dropping. This information can then be incorporated in a context-aware filter that is used to combine regular continuous measurements with discrete detection events in order to improve estimation. We evaluate the filter using real- patient data collected over the last decade at the Children's Hospital of Philadelphia and show that it is a promising approach for the estimation of unobservable physiological variables.\",\"PeriodicalId\":6619,\"journal\":{\"name\":\"2016 ACM/IEEE 7th International Conference on Cyber-Physical Systems (ICCPS)\",\"volume\":\"31 1\",\"pages\":\"1-10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 ACM/IEEE 7th International Conference on Cyber-Physical Systems (ICCPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCPS.2016.7479102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 ACM/IEEE 7th International Conference on Cyber-Physical Systems (ICCPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCPS.2016.7479102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在本文中,我们解决的问题估计血氧浓度在手术期间的儿童。目前,氧气含量只能通过从患者身上抽血等侵入性手段来测量。在这项工作中,我们试图仅通过在手术中收集的其他非侵入性测量(例如,吸入空气中的氧气含量,吸入空气的体积)来进行估计。尽管将这些测量映射到血氧含量的模型包含多个参数,这些参数在患者之间差异很大,但非侵入性测量可用于提供关于氧浓度是上升还是下降的二元信息。然后,可以将该信息合并到上下文感知过滤器中,该过滤器用于将常规连续测量与离散检测事件结合起来,以改进估计。我们使用过去十年在费城儿童医院收集的真实患者数据来评估过滤器,并表明它是估计不可观察生理变量的一种有前途的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of Blood Oxygen Content Using Context-Aware Filtering
In this paper we address the problem of estimating the blood oxygen concentration in children during surgery. Currently, the oxygen content can only be measured through invasive means such as drawing blood from the patient. In this work, we attempt to perform estimation by only using other non-invasive measurements (e.g., fraction of oxygen in inspired air, volume of inspired air) collected during surgery. Although models mapping these measurements to blood oxygen content contain multiple parameters that vary widely across patients, the non-invasive measurements can be used to provide binary information about whether the oxygen concentration is rising or dropping. This information can then be incorporated in a context-aware filter that is used to combine regular continuous measurements with discrete detection events in order to improve estimation. We evaluate the filter using real- patient data collected over the last decade at the Children's Hospital of Philadelphia and show that it is a promising approach for the estimation of unobservable physiological variables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信