低通信开销分散神经网络的无遗忘学习

Xinyue Liang, Alireza M. Javid, M. Skoglund, S. Chatterjee
{"title":"低通信开销分散神经网络的无遗忘学习","authors":"Xinyue Liang, Alireza M. Javid, M. Skoglund, S. Chatterjee","doi":"10.23919/Eusipco47968.2020.9287777","DOIUrl":null,"url":null,"abstract":"We consider the problem of training a neural net over a decentralized scenario with a low communication over-head. The problem is addressed by adapting a recently proposed incremental learning approach, called ‘learning without forgetting’. While an incremental learning approach assumes data availability in a sequence, nodes of the decentralized scenario can not share data between them and there is no master node. Nodes can communicate information about model parameters among neighbors. Communication of model parameters is the key to adapt the ‘learning without forgetting’ approach to the decentralized scenario. We use random walk based communication to handle a highly limited communication resource.","PeriodicalId":6705,"journal":{"name":"2020 28th European Signal Processing Conference (EUSIPCO)","volume":"44 1","pages":"2185-2189"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning without Forgetting for Decentralized Neural Nets with Low Communication Overhead\",\"authors\":\"Xinyue Liang, Alireza M. Javid, M. Skoglund, S. Chatterjee\",\"doi\":\"10.23919/Eusipco47968.2020.9287777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of training a neural net over a decentralized scenario with a low communication over-head. The problem is addressed by adapting a recently proposed incremental learning approach, called ‘learning without forgetting’. While an incremental learning approach assumes data availability in a sequence, nodes of the decentralized scenario can not share data between them and there is no master node. Nodes can communicate information about model parameters among neighbors. Communication of model parameters is the key to adapt the ‘learning without forgetting’ approach to the decentralized scenario. We use random walk based communication to handle a highly limited communication resource.\",\"PeriodicalId\":6705,\"journal\":{\"name\":\"2020 28th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"44 1\",\"pages\":\"2185-2189\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 28th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/Eusipco47968.2020.9287777\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/Eusipco47968.2020.9287777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑在低通信开销的分散场景下训练神经网络的问题。这个问题是通过采用最近提出的增量学习方法来解决的,这种方法被称为“不忘的学习”。虽然增量学习方法假设数据按顺序可用,但分散场景的节点不能在它们之间共享数据,并且没有主节点。节点可以在相邻节点之间传递模型参数信息。模型参数的交流是使“不忘学习”方法适应分散场景的关键。我们使用基于随机漫步的通信来处理高度有限的通信资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning without Forgetting for Decentralized Neural Nets with Low Communication Overhead
We consider the problem of training a neural net over a decentralized scenario with a low communication over-head. The problem is addressed by adapting a recently proposed incremental learning approach, called ‘learning without forgetting’. While an incremental learning approach assumes data availability in a sequence, nodes of the decentralized scenario can not share data between them and there is no master node. Nodes can communicate information about model parameters among neighbors. Communication of model parameters is the key to adapt the ‘learning without forgetting’ approach to the decentralized scenario. We use random walk based communication to handle a highly limited communication resource.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信