Xinyue Liang, Alireza M. Javid, M. Skoglund, S. Chatterjee
{"title":"低通信开销分散神经网络的无遗忘学习","authors":"Xinyue Liang, Alireza M. Javid, M. Skoglund, S. Chatterjee","doi":"10.23919/Eusipco47968.2020.9287777","DOIUrl":null,"url":null,"abstract":"We consider the problem of training a neural net over a decentralized scenario with a low communication over-head. The problem is addressed by adapting a recently proposed incremental learning approach, called ‘learning without forgetting’. While an incremental learning approach assumes data availability in a sequence, nodes of the decentralized scenario can not share data between them and there is no master node. Nodes can communicate information about model parameters among neighbors. Communication of model parameters is the key to adapt the ‘learning without forgetting’ approach to the decentralized scenario. We use random walk based communication to handle a highly limited communication resource.","PeriodicalId":6705,"journal":{"name":"2020 28th European Signal Processing Conference (EUSIPCO)","volume":"44 1","pages":"2185-2189"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning without Forgetting for Decentralized Neural Nets with Low Communication Overhead\",\"authors\":\"Xinyue Liang, Alireza M. Javid, M. Skoglund, S. Chatterjee\",\"doi\":\"10.23919/Eusipco47968.2020.9287777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of training a neural net over a decentralized scenario with a low communication over-head. The problem is addressed by adapting a recently proposed incremental learning approach, called ‘learning without forgetting’. While an incremental learning approach assumes data availability in a sequence, nodes of the decentralized scenario can not share data between them and there is no master node. Nodes can communicate information about model parameters among neighbors. Communication of model parameters is the key to adapt the ‘learning without forgetting’ approach to the decentralized scenario. We use random walk based communication to handle a highly limited communication resource.\",\"PeriodicalId\":6705,\"journal\":{\"name\":\"2020 28th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"44 1\",\"pages\":\"2185-2189\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 28th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/Eusipco47968.2020.9287777\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/Eusipco47968.2020.9287777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Learning without Forgetting for Decentralized Neural Nets with Low Communication Overhead
We consider the problem of training a neural net over a decentralized scenario with a low communication over-head. The problem is addressed by adapting a recently proposed incremental learning approach, called ‘learning without forgetting’. While an incremental learning approach assumes data availability in a sequence, nodes of the decentralized scenario can not share data between them and there is no master node. Nodes can communicate information about model parameters among neighbors. Communication of model parameters is the key to adapt the ‘learning without forgetting’ approach to the decentralized scenario. We use random walk based communication to handle a highly limited communication resource.