{"title":"尼日利亚东北部半干旱区沙漠化的光谱分析","authors":"C. Ndabula","doi":"10.7176/jnsr/12-14-06","DOIUrl":null,"url":null,"abstract":"The method of integrating remote sensing, Geographic Information System (GIS) and field survey was employed. Assessment of the rate and intensity of sand dune encroachment using multi-temporal Landsat images (Landsat.TM, 1986, Landsat.ETM, 2000 and Landsat.OLI, TIR, 2016) and GIS. The satellite images were processed by converting raw Digital Number (DNs) values to radiance images which were converted into reflectance images used for spectral analysis.The satellite images were processed accordingly for evaluating six (6) spectral indices; Crust Index (CI, Grain Size Index, Bare soil Index (BSI), Normalized Difference Sand Dune Index (NDSDI), Normalized Difference Sand Index (NDSI), Normalised Difference Soil Index (NDSLI). An aggregate index of each of the six (6) selected indices was evaluated and the long term geometric mean was determined and used for image differencing with the baseline date image. A combination of MEDALUS.ESA and Image Differencing was adopted for change detection technique. Sandy landscapes were mapped into four (4) natural classes using natural jenks classifier of the ArcGIS analytical tool based on pre-field field determination and post verification. The description of the four (4) sandy landscape classes is as follows: Active, Semi-active, Semi-fixed and Fixed sand dune/sheets. Results of overall sandy desertification based on Aggregate Sandification Index indicates that active and semi-active sandy landscapes have progressed steadily at annual rate of expansion of 1.20 and 1.28 km 2 and intensity for the of 0.13 and 0.23% respectively. This has caused a corresponding decrease in the semi-fixed and fixed sandy landscapes of 1.24 and 1.39 km 2 and intensity for the period of 0.17 and 0.47 % respectively. The highest risk of sandy desertification is in the fixed sandy landscape which is be lost an an annual rate of 1.39 km 2 and 0.47% intensity being the highest among other classes. The result of this study indicates that the natural ecology or vegetation, graze lands, irrigated lands, rainfed farmlands, settlements, infrastructure are at high risk of sandy desertification in the semi-arid zone of Nigeria. This study is also a pointer that the shelter belts have not been very effective in controlling wind erosion and thus sandy desertification. findings in this study suggest the need for concerted efforts to control sandy desertification in Nigeria. The present banded spacing and orientation of belts need be appraise with regards to their effectiveness in controlling wind erosion and sandy desertification and with a view towards improvement.","PeriodicalId":16368,"journal":{"name":"Journal of Natural Sciences Research","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral Analysis of Sandy Desertification in the Semi-Arid Zone of North Eastern Nigeria\",\"authors\":\"C. Ndabula\",\"doi\":\"10.7176/jnsr/12-14-06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The method of integrating remote sensing, Geographic Information System (GIS) and field survey was employed. Assessment of the rate and intensity of sand dune encroachment using multi-temporal Landsat images (Landsat.TM, 1986, Landsat.ETM, 2000 and Landsat.OLI, TIR, 2016) and GIS. The satellite images were processed by converting raw Digital Number (DNs) values to radiance images which were converted into reflectance images used for spectral analysis.The satellite images were processed accordingly for evaluating six (6) spectral indices; Crust Index (CI, Grain Size Index, Bare soil Index (BSI), Normalized Difference Sand Dune Index (NDSDI), Normalized Difference Sand Index (NDSI), Normalised Difference Soil Index (NDSLI). An aggregate index of each of the six (6) selected indices was evaluated and the long term geometric mean was determined and used for image differencing with the baseline date image. A combination of MEDALUS.ESA and Image Differencing was adopted for change detection technique. Sandy landscapes were mapped into four (4) natural classes using natural jenks classifier of the ArcGIS analytical tool based on pre-field field determination and post verification. The description of the four (4) sandy landscape classes is as follows: Active, Semi-active, Semi-fixed and Fixed sand dune/sheets. Results of overall sandy desertification based on Aggregate Sandification Index indicates that active and semi-active sandy landscapes have progressed steadily at annual rate of expansion of 1.20 and 1.28 km 2 and intensity for the of 0.13 and 0.23% respectively. This has caused a corresponding decrease in the semi-fixed and fixed sandy landscapes of 1.24 and 1.39 km 2 and intensity for the period of 0.17 and 0.47 % respectively. The highest risk of sandy desertification is in the fixed sandy landscape which is be lost an an annual rate of 1.39 km 2 and 0.47% intensity being the highest among other classes. The result of this study indicates that the natural ecology or vegetation, graze lands, irrigated lands, rainfed farmlands, settlements, infrastructure are at high risk of sandy desertification in the semi-arid zone of Nigeria. This study is also a pointer that the shelter belts have not been very effective in controlling wind erosion and thus sandy desertification. findings in this study suggest the need for concerted efforts to control sandy desertification in Nigeria. The present banded spacing and orientation of belts need be appraise with regards to their effectiveness in controlling wind erosion and sandy desertification and with a view towards improvement.\",\"PeriodicalId\":16368,\"journal\":{\"name\":\"Journal of Natural Sciences Research\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Natural Sciences Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7176/jnsr/12-14-06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Sciences Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7176/jnsr/12-14-06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
采用遥感、地理信息系统(GIS)和野外调查相结合的方法。基于多时相Landsat影像的沙丘侵蚀速率和强度评估TM, 1986,陆地卫星。ETM, 2000和Landsat。OLI, TIR, 2016)和GIS。对卫星图像进行处理,将原始数字数(dn)值转换为辐亮度图像,辐亮度图像转换为反射率图像,用于光谱分析。对卫星图像进行相应处理,评估6个光谱指标;地壳指数(CI)、粒径指数、裸土指数(BSI)、归一化差异沙丘指数(NDSDI)、归一化差异沙粒指数(NDSI)、归一化差异土壤指数(NDSLI)。评估六(6)个选定指数的综合指数,确定长期几何平均值,并将其用于与基线日期图像的图像差异。MEDALUS的组合。变化检测技术采用ESA和图像差分技术。利用ArcGIS分析工具中的自然詹克斯分类器,在实地测定和事后验证的基础上,将沙质景观划分为4个自然类。四(4)种沙质景观类型的描述如下:活动、半活动、半固定和固定沙丘/片。基于综合沙化指数的总体沙化结果表明,活跃和半活跃沙质景观以每年1.20和1.28 km 2的速度稳步发展,强度分别为0.13%和0.23%。相应的,半固定和固定沙质景观减少了1.24 km和1.39 km 2,强度减少了0.17%和0.47%。沙化风险最高的是固定沙质景观,年损失率为1.39 km2,强度为0.47%,是其他类型中最高的。研究结果表明,尼日利亚半干旱区自然生态或植被、放牧地、灌溉地、雨养农田、居民点、基础设施是沙漠化的高危区。这项研究也表明,防护林带在控制风蚀和沙漠化方面并不是很有效。这项研究的结果表明,需要协调一致的努力来控制尼日利亚的沙漠化。需要对目前带状带的间距和方向进行评价,看它们在控制风蚀和沙漠化方面是否有效,以便加以改进。
Spectral Analysis of Sandy Desertification in the Semi-Arid Zone of North Eastern Nigeria
The method of integrating remote sensing, Geographic Information System (GIS) and field survey was employed. Assessment of the rate and intensity of sand dune encroachment using multi-temporal Landsat images (Landsat.TM, 1986, Landsat.ETM, 2000 and Landsat.OLI, TIR, 2016) and GIS. The satellite images were processed by converting raw Digital Number (DNs) values to radiance images which were converted into reflectance images used for spectral analysis.The satellite images were processed accordingly for evaluating six (6) spectral indices; Crust Index (CI, Grain Size Index, Bare soil Index (BSI), Normalized Difference Sand Dune Index (NDSDI), Normalized Difference Sand Index (NDSI), Normalised Difference Soil Index (NDSLI). An aggregate index of each of the six (6) selected indices was evaluated and the long term geometric mean was determined and used for image differencing with the baseline date image. A combination of MEDALUS.ESA and Image Differencing was adopted for change detection technique. Sandy landscapes were mapped into four (4) natural classes using natural jenks classifier of the ArcGIS analytical tool based on pre-field field determination and post verification. The description of the four (4) sandy landscape classes is as follows: Active, Semi-active, Semi-fixed and Fixed sand dune/sheets. Results of overall sandy desertification based on Aggregate Sandification Index indicates that active and semi-active sandy landscapes have progressed steadily at annual rate of expansion of 1.20 and 1.28 km 2 and intensity for the of 0.13 and 0.23% respectively. This has caused a corresponding decrease in the semi-fixed and fixed sandy landscapes of 1.24 and 1.39 km 2 and intensity for the period of 0.17 and 0.47 % respectively. The highest risk of sandy desertification is in the fixed sandy landscape which is be lost an an annual rate of 1.39 km 2 and 0.47% intensity being the highest among other classes. The result of this study indicates that the natural ecology or vegetation, graze lands, irrigated lands, rainfed farmlands, settlements, infrastructure are at high risk of sandy desertification in the semi-arid zone of Nigeria. This study is also a pointer that the shelter belts have not been very effective in controlling wind erosion and thus sandy desertification. findings in this study suggest the need for concerted efforts to control sandy desertification in Nigeria. The present banded spacing and orientation of belts need be appraise with regards to their effectiveness in controlling wind erosion and sandy desertification and with a view towards improvement.