Ugo Dal Lago, C. Faggian, B. Valiron, Akira Yoshimizu
{"title":"平行几何学:经典、概率和量子效应","authors":"Ugo Dal Lago, C. Faggian, B. Valiron, Akira Yoshimizu","doi":"10.1145/3009837.3009859","DOIUrl":null,"url":null,"abstract":"We introduce a Geometry of Interaction model for higher-order quantum computation, and prove its adequacy for a fully fledged quantum programming language in which entanglement, duplication, and recursion are all available. This model is an instance of a new framework which captures not only quantum but also classical and probabilistic computation. Its main feature is the ability to model commutative effects in a parallel setting. Our model comes with a multi-token machine, a proof net system, and a -style language. Being based on a multi-token machine equipped with a memory, it has a concrete nature which makes it well suited for building low-level operational descriptions of higher-order languages.","PeriodicalId":20657,"journal":{"name":"Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"The geometry of parallelism: classical, probabilistic, and quantum effects\",\"authors\":\"Ugo Dal Lago, C. Faggian, B. Valiron, Akira Yoshimizu\",\"doi\":\"10.1145/3009837.3009859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a Geometry of Interaction model for higher-order quantum computation, and prove its adequacy for a fully fledged quantum programming language in which entanglement, duplication, and recursion are all available. This model is an instance of a new framework which captures not only quantum but also classical and probabilistic computation. Its main feature is the ability to model commutative effects in a parallel setting. Our model comes with a multi-token machine, a proof net system, and a -style language. Being based on a multi-token machine equipped with a memory, it has a concrete nature which makes it well suited for building low-level operational descriptions of higher-order languages.\",\"PeriodicalId\":20657,\"journal\":{\"name\":\"Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3009837.3009859\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3009837.3009859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The geometry of parallelism: classical, probabilistic, and quantum effects
We introduce a Geometry of Interaction model for higher-order quantum computation, and prove its adequacy for a fully fledged quantum programming language in which entanglement, duplication, and recursion are all available. This model is an instance of a new framework which captures not only quantum but also classical and probabilistic computation. Its main feature is the ability to model commutative effects in a parallel setting. Our model comes with a multi-token machine, a proof net system, and a -style language. Being based on a multi-token machine equipped with a memory, it has a concrete nature which makes it well suited for building low-level operational descriptions of higher-order languages.