建议满足网页浏览:增强协同过滤使用互联网浏览日志

Royi Ronen, E. Yom-Tov, G. Lavee
{"title":"建议满足网页浏览:增强协同过滤使用互联网浏览日志","authors":"Royi Ronen, E. Yom-Tov, G. Lavee","doi":"10.1109/ICDE.2016.7498327","DOIUrl":null,"url":null,"abstract":"Collaborative filtering (CF) recommendation systems are one of the most popular and successful methods for recommending products to people. CF systems work by finding similarities between different people according to their past purchases, and using these similarities to suggest possible items of interest. In this work we show that CF systems can be enhanced using Internet browsing data and search engine query logs, both of which represent a rich profile of individuals' interests.","PeriodicalId":6883,"journal":{"name":"2016 IEEE 32nd International Conference on Data Engineering (ICDE)","volume":"1 1","pages":"1230-1238"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Recommendations meet web browsing: enhancing collaborative filtering using internet browsing logs\",\"authors\":\"Royi Ronen, E. Yom-Tov, G. Lavee\",\"doi\":\"10.1109/ICDE.2016.7498327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Collaborative filtering (CF) recommendation systems are one of the most popular and successful methods for recommending products to people. CF systems work by finding similarities between different people according to their past purchases, and using these similarities to suggest possible items of interest. In this work we show that CF systems can be enhanced using Internet browsing data and search engine query logs, both of which represent a rich profile of individuals' interests.\",\"PeriodicalId\":6883,\"journal\":{\"name\":\"2016 IEEE 32nd International Conference on Data Engineering (ICDE)\",\"volume\":\"1 1\",\"pages\":\"1230-1238\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 32nd International Conference on Data Engineering (ICDE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2016.7498327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 32nd International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2016.7498327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

协同过滤(CF)推荐系统是向人们推荐产品的最流行和成功的方法之一。CF系统的工作原理是根据不同的人过去的购买行为找到他们之间的相似之处,并利用这些相似之处来推荐可能感兴趣的商品。在这项工作中,我们表明CF系统可以使用互联网浏览数据和搜索引擎查询日志来增强,这两者都代表了个人兴趣的丰富轮廓。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recommendations meet web browsing: enhancing collaborative filtering using internet browsing logs
Collaborative filtering (CF) recommendation systems are one of the most popular and successful methods for recommending products to people. CF systems work by finding similarities between different people according to their past purchases, and using these similarities to suggest possible items of interest. In this work we show that CF systems can be enhanced using Internet browsing data and search engine query logs, both of which represent a rich profile of individuals' interests.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信