{"title":"基于人工神经网络的嵌入式锂离子电池充电状态估计","authors":"Muhammad Adib Kamali, W. Lim","doi":"10.22146/jnteti.v12i2.6632","DOIUrl":null,"url":null,"abstract":"The conventional state of charge (SOC) estimation model has several concerns, such as accuracy and reliability. In order to realize robust SOC estimation for embedded applications, this study focuses on three concerns of the existing SOC estimation model: accuracy, robustness, and practicality. In improving the estimation accuracy and robustness, this study took into account the dynamic of the actual SOC caused by the dynamic charging and discharging process. In practice, the charging and discharging processes have characteristics that must be considered to realize robust SOC estimation. The model-based SOC estimation developed based on the virtual battery model causes difficulties for real-time applications. Additionally, model-based SOC estimation cannot be reliably extrapolated to different battery types. In defining the behavior of various types of batteries, the model-based SOC estimation must be updated. Hence, this study utilized data-driven SOC estimation based on an artificial neural network (ANN) and measurable battery data. The ANN model, which has excellent adaptability to nonlinear systems, is utilized to increase accuracy. Additionally, using measurable battery data such as voltage and current signals, the SOC estimation model is suitable for embedded applications. Results indicate that estimating SOC with the proposed model reduced errors with respect to actual datasets. In order to verify the feasibility of the proposed model, an online estimation was out on the embedded system with the use of C2000 real-time microcontrollers. Results show that the proposed model can be executed in an embedded system using measurable battery data.","PeriodicalId":31477,"journal":{"name":"Jurnal Nasional Teknik Elektro dan Teknologi Informasi","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ANN-based State of Charge Estimation of Li-ion Batteries for Embedded Applications\",\"authors\":\"Muhammad Adib Kamali, W. Lim\",\"doi\":\"10.22146/jnteti.v12i2.6632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The conventional state of charge (SOC) estimation model has several concerns, such as accuracy and reliability. In order to realize robust SOC estimation for embedded applications, this study focuses on three concerns of the existing SOC estimation model: accuracy, robustness, and practicality. In improving the estimation accuracy and robustness, this study took into account the dynamic of the actual SOC caused by the dynamic charging and discharging process. In practice, the charging and discharging processes have characteristics that must be considered to realize robust SOC estimation. The model-based SOC estimation developed based on the virtual battery model causes difficulties for real-time applications. Additionally, model-based SOC estimation cannot be reliably extrapolated to different battery types. In defining the behavior of various types of batteries, the model-based SOC estimation must be updated. Hence, this study utilized data-driven SOC estimation based on an artificial neural network (ANN) and measurable battery data. The ANN model, which has excellent adaptability to nonlinear systems, is utilized to increase accuracy. Additionally, using measurable battery data such as voltage and current signals, the SOC estimation model is suitable for embedded applications. Results indicate that estimating SOC with the proposed model reduced errors with respect to actual datasets. In order to verify the feasibility of the proposed model, an online estimation was out on the embedded system with the use of C2000 real-time microcontrollers. Results show that the proposed model can be executed in an embedded system using measurable battery data.\",\"PeriodicalId\":31477,\"journal\":{\"name\":\"Jurnal Nasional Teknik Elektro dan Teknologi Informasi\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Nasional Teknik Elektro dan Teknologi Informasi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22146/jnteti.v12i2.6632\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Nasional Teknik Elektro dan Teknologi Informasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/jnteti.v12i2.6632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ANN-based State of Charge Estimation of Li-ion Batteries for Embedded Applications
The conventional state of charge (SOC) estimation model has several concerns, such as accuracy and reliability. In order to realize robust SOC estimation for embedded applications, this study focuses on three concerns of the existing SOC estimation model: accuracy, robustness, and practicality. In improving the estimation accuracy and robustness, this study took into account the dynamic of the actual SOC caused by the dynamic charging and discharging process. In practice, the charging and discharging processes have characteristics that must be considered to realize robust SOC estimation. The model-based SOC estimation developed based on the virtual battery model causes difficulties for real-time applications. Additionally, model-based SOC estimation cannot be reliably extrapolated to different battery types. In defining the behavior of various types of batteries, the model-based SOC estimation must be updated. Hence, this study utilized data-driven SOC estimation based on an artificial neural network (ANN) and measurable battery data. The ANN model, which has excellent adaptability to nonlinear systems, is utilized to increase accuracy. Additionally, using measurable battery data such as voltage and current signals, the SOC estimation model is suitable for embedded applications. Results indicate that estimating SOC with the proposed model reduced errors with respect to actual datasets. In order to verify the feasibility of the proposed model, an online estimation was out on the embedded system with the use of C2000 real-time microcontrollers. Results show that the proposed model can be executed in an embedded system using measurable battery data.