测量双分性和产生分区的光谱技术

IF 2.2 4区 数学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Azhar Aleidan, P. Knight
{"title":"测量双分性和产生分区的光谱技术","authors":"Azhar Aleidan, P. Knight","doi":"10.1093/comnet/cnad026","DOIUrl":null,"url":null,"abstract":"\n Complex networks can often exhibit a high degree of bipartivity. There are many well-known ways for testing this, and in this article, we give a systematic analysis of characterizations based on the spectra of the adjacency matrix and various graph Laplacians. We show that measures based on these characterizations can be drastically different results and leads us to distinguish between local and global loss of bipartivity. We test several methods for finding approximate bipartitions based on analysing eigenvectors and show that several alternatives seem to work well (and can work better than more complex methods) when augmented with local improvement.","PeriodicalId":15442,"journal":{"name":"Journal of complex networks","volume":"16 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral techniques for measuring bipartivity and producing partitions\",\"authors\":\"Azhar Aleidan, P. Knight\",\"doi\":\"10.1093/comnet/cnad026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Complex networks can often exhibit a high degree of bipartivity. There are many well-known ways for testing this, and in this article, we give a systematic analysis of characterizations based on the spectra of the adjacency matrix and various graph Laplacians. We show that measures based on these characterizations can be drastically different results and leads us to distinguish between local and global loss of bipartivity. We test several methods for finding approximate bipartitions based on analysing eigenvectors and show that several alternatives seem to work well (and can work better than more complex methods) when augmented with local improvement.\",\"PeriodicalId\":15442,\"journal\":{\"name\":\"Journal of complex networks\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of complex networks\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/comnet/cnad026\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of complex networks","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/comnet/cnad026","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

复杂的网络常常表现出高度的双方性。有许多众所周知的方法来测试这一点,在本文中,我们给出了基于邻接矩阵谱和各种图拉普拉斯算子的表征的系统分析。我们表明,基于这些特征的措施可能会产生截然不同的结果,并导致我们区分局部和全球双方性损失。我们测试了几种基于分析特征向量来寻找近似双分区的方法,并表明当增加局部改进时,几种替代方法似乎工作得很好(并且可以比更复杂的方法更好)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral techniques for measuring bipartivity and producing partitions
Complex networks can often exhibit a high degree of bipartivity. There are many well-known ways for testing this, and in this article, we give a systematic analysis of characterizations based on the spectra of the adjacency matrix and various graph Laplacians. We show that measures based on these characterizations can be drastically different results and leads us to distinguish between local and global loss of bipartivity. We test several methods for finding approximate bipartitions based on analysing eigenvectors and show that several alternatives seem to work well (and can work better than more complex methods) when augmented with local improvement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of complex networks
Journal of complex networks MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
4.20
自引率
9.50%
发文量
40
期刊介绍: Journal of Complex Networks publishes original articles and reviews with a significant contribution to the analysis and understanding of complex networks and its applications in diverse fields. Complex networks are loosely defined as networks with nontrivial topology and dynamics, which appear as the skeletons of complex systems in the real-world. The journal covers everything from the basic mathematical, physical and computational principles needed for studying complex networks to their applications leading to predictive models in molecular, biological, ecological, informational, engineering, social, technological and other systems. It includes, but is not limited to, the following topics: - Mathematical and numerical analysis of networks - Network theory and computer sciences - Structural analysis of networks - Dynamics on networks - Physical models on networks - Networks and epidemiology - Social, socio-economic and political networks - Ecological networks - Technological and infrastructural networks - Brain and tissue networks - Biological and molecular networks - Spatial networks - Techno-social networks i.e. online social networks, social networking sites, social media - Other applications of networks - Evolving networks - Multilayer networks - Game theory on networks - Biomedicine related networks - Animal social networks - Climate networks - Cognitive, language and informational network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信