基于信息论视角的可控图像合成的解纠缠表示学习

Shichang Tang, Xueying Zhou, Xuming He, Yi Ma
{"title":"基于信息论视角的可控图像合成的解纠缠表示学习","authors":"Shichang Tang, Xueying Zhou, Xuming He, Yi Ma","doi":"10.1109/ICPR48806.2021.9411925","DOIUrl":null,"url":null,"abstract":"In this paper, we look into the problem of disentangled representation learning and controllable image synthesis in a deep generative model. We develop an encoder-decoder architecture for a variant of the Variational Auto-Encoder (VAE) with two latent codes $z_{1}$ and $z_{2}$. Our framework uses $z_{2}$ to capture specified factors of variation while $z_{1}$ captures the complementary factors of variation. To this end, we analyze the learning problem from the perspective of multivariate mutual information, derive optimizable lower bounds of the conditional mutual information in the image synthesis processes and incorporate them into the training objective. We validate our method empirically on the Color MNIST dataset and the CelebA dataset by showing controllable image syntheses. Our proposed paradigm is simple yet effective and is applicable to many situations, including those where there is not an explicit factorization of features available, or where the features are non-categorical.","PeriodicalId":6783,"journal":{"name":"2020 25th International Conference on Pattern Recognition (ICPR)","volume":"58 1","pages":"10042-10049"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Disentangled Representation Learning for Controllable Image Synthesis: An Information-Theoretic Perspective\",\"authors\":\"Shichang Tang, Xueying Zhou, Xuming He, Yi Ma\",\"doi\":\"10.1109/ICPR48806.2021.9411925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we look into the problem of disentangled representation learning and controllable image synthesis in a deep generative model. We develop an encoder-decoder architecture for a variant of the Variational Auto-Encoder (VAE) with two latent codes $z_{1}$ and $z_{2}$. Our framework uses $z_{2}$ to capture specified factors of variation while $z_{1}$ captures the complementary factors of variation. To this end, we analyze the learning problem from the perspective of multivariate mutual information, derive optimizable lower bounds of the conditional mutual information in the image synthesis processes and incorporate them into the training objective. We validate our method empirically on the Color MNIST dataset and the CelebA dataset by showing controllable image syntheses. Our proposed paradigm is simple yet effective and is applicable to many situations, including those where there is not an explicit factorization of features available, or where the features are non-categorical.\",\"PeriodicalId\":6783,\"journal\":{\"name\":\"2020 25th International Conference on Pattern Recognition (ICPR)\",\"volume\":\"58 1\",\"pages\":\"10042-10049\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 25th International Conference on Pattern Recognition (ICPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR48806.2021.9411925\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 25th International Conference on Pattern Recognition (ICPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR48806.2021.9411925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文研究了深度生成模型中的解纠缠表示学习和可控图像合成问题。我们针对变分自编码器(VAE)的一种变体开发了一种编码器-解码器结构,该结构具有两个潜在码$z_{1}$和$z_{2}$。我们的框架使用$z_{2}$捕捉特定的变异因子,而$z_{1}$捕捉互补的变异因子。为此,我们从多元互信息的角度分析学习问题,推导出图像合成过程中条件互信息的可优化下界,并将其纳入训练目标。通过展示可控图像合成,我们在Color MNIST数据集和CelebA数据集上验证了我们的方法。我们提出的范例简单而有效,适用于许多情况,包括那些没有明确的可用特征分解,或者特征是非分类的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Disentangled Representation Learning for Controllable Image Synthesis: An Information-Theoretic Perspective
In this paper, we look into the problem of disentangled representation learning and controllable image synthesis in a deep generative model. We develop an encoder-decoder architecture for a variant of the Variational Auto-Encoder (VAE) with two latent codes $z_{1}$ and $z_{2}$. Our framework uses $z_{2}$ to capture specified factors of variation while $z_{1}$ captures the complementary factors of variation. To this end, we analyze the learning problem from the perspective of multivariate mutual information, derive optimizable lower bounds of the conditional mutual information in the image synthesis processes and incorporate them into the training objective. We validate our method empirically on the Color MNIST dataset and the CelebA dataset by showing controllable image syntheses. Our proposed paradigm is simple yet effective and is applicable to many situations, including those where there is not an explicit factorization of features available, or where the features are non-categorical.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信