{"title":"关于离散粗糙希尔伯特变换的逆","authors":"M. Paluszynski, J. Zienkiewicz","doi":"10.4064/cm7551-2-2020","DOIUrl":null,"url":null,"abstract":"We describe the structure of the resolvent of the discrete rough truncated Hilbert transform under the critical exponent. This extends the results obtained in [8].","PeriodicalId":8426,"journal":{"name":"arXiv: Functional Analysis","volume":"58 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On inverses of discrete rough Hilbert transforms\",\"authors\":\"M. Paluszynski, J. Zienkiewicz\",\"doi\":\"10.4064/cm7551-2-2020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe the structure of the resolvent of the discrete rough truncated Hilbert transform under the critical exponent. This extends the results obtained in [8].\",\"PeriodicalId\":8426,\"journal\":{\"name\":\"arXiv: Functional Analysis\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Functional Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4064/cm7551-2-2020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4064/cm7551-2-2020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We describe the structure of the resolvent of the discrete rough truncated Hilbert transform under the critical exponent. This extends the results obtained in [8].