{"title":"Fe-As-S体系——相位关系及其应用","authors":"L. A. Clark","doi":"10.2113/GSECONGEO.55.7.1345","DOIUrl":null,"url":null,"abstract":"A basis for the interpretation of Fe-As-S mineral assemblages in ores has been provided through systematic collection of physical and chemical data in the synthetic system Fe-As-S. Most interesting is the temperature limitation of 491 degrees C. for coexistence of the commonly observed mineral pair pyrite-arsenopyrite. The As:S ratio in arsenopyrite and/or loellingite may add another to the group of geothermometry techniques now available for ore studies. The observation that Au diffuses rapidly through fine-grained arsenopyrite at temperatures above 600 degrees C. and confining pressures up to 2,070 bars provides some insight into the relations of Au and arsenopyrite in many ores. Equilibrium phase relations in the Fe-As-S system were determined at 600 degrees C., and changes in assemblages were studied in the 400 degrees to 800 degrees C. temperature range. At 600 degrees C. a very narrow liquid field lies along the As-S side of the ternary system between 100 and 22.8 + or - 0.2 weight percent S. Tie-lines connect various parts of this liquid field to pyrite, to pyrrhotite, and to arsenopyrite. At this temperature there are also tie-lines between pyrrhotite-arsenopyrite, arsenopyrite-As, arsenopyrite-toellingite, pyrrhotite-loellingite, pyrrhotite-FeAs, and FeS-Fe 2 As. At temperatures above 600 degrees C. synthetic arsenopyrite has the approximate composition FeAs (sub 1.1) S (sub 0.9) . Compositions that are S rich relative to ideal FeAsS become stable at lower temperatures and under high confining pressures. Changes in the phase assemblages at various temperatures are governed by the reactions: pyrite + arsenopyrite pyrrhotite + liquid or vapor, arsenopyrite + As loellingite + liquid or vapor, and arsenopyrite pyrrhotite + loellingite + liquid or vapor. The invariant temperature at which both liquid and vapor are present in these assemblages are 491 degrees + or - 12 degrees C., 688 degrees + or - 3 degrees C., and 702 degrees + or - 3DGC., respectively. The first reaction was investigated at confining pressures up to 2,070 bars, at which pressure pyrite and arsenopyrite can coexist up to 528 degrees + or - 10 degrees C.","PeriodicalId":11469,"journal":{"name":"Economic Geology","volume":"10 1","pages":"1345-1381"},"PeriodicalIF":4.9000,"publicationDate":"1960-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"151","resultStr":"{\"title\":\"The Fe-As-S system--Phase relations and applications\",\"authors\":\"L. A. Clark\",\"doi\":\"10.2113/GSECONGEO.55.7.1345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A basis for the interpretation of Fe-As-S mineral assemblages in ores has been provided through systematic collection of physical and chemical data in the synthetic system Fe-As-S. Most interesting is the temperature limitation of 491 degrees C. for coexistence of the commonly observed mineral pair pyrite-arsenopyrite. The As:S ratio in arsenopyrite and/or loellingite may add another to the group of geothermometry techniques now available for ore studies. The observation that Au diffuses rapidly through fine-grained arsenopyrite at temperatures above 600 degrees C. and confining pressures up to 2,070 bars provides some insight into the relations of Au and arsenopyrite in many ores. Equilibrium phase relations in the Fe-As-S system were determined at 600 degrees C., and changes in assemblages were studied in the 400 degrees to 800 degrees C. temperature range. At 600 degrees C. a very narrow liquid field lies along the As-S side of the ternary system between 100 and 22.8 + or - 0.2 weight percent S. Tie-lines connect various parts of this liquid field to pyrite, to pyrrhotite, and to arsenopyrite. At this temperature there are also tie-lines between pyrrhotite-arsenopyrite, arsenopyrite-As, arsenopyrite-toellingite, pyrrhotite-loellingite, pyrrhotite-FeAs, and FeS-Fe 2 As. At temperatures above 600 degrees C. synthetic arsenopyrite has the approximate composition FeAs (sub 1.1) S (sub 0.9) . Compositions that are S rich relative to ideal FeAsS become stable at lower temperatures and under high confining pressures. Changes in the phase assemblages at various temperatures are governed by the reactions: pyrite + arsenopyrite pyrrhotite + liquid or vapor, arsenopyrite + As loellingite + liquid or vapor, and arsenopyrite pyrrhotite + loellingite + liquid or vapor. The invariant temperature at which both liquid and vapor are present in these assemblages are 491 degrees + or - 12 degrees C., 688 degrees + or - 3 degrees C., and 702 degrees + or - 3DGC., respectively. The first reaction was investigated at confining pressures up to 2,070 bars, at which pressure pyrite and arsenopyrite can coexist up to 528 degrees + or - 10 degrees C.\",\"PeriodicalId\":11469,\"journal\":{\"name\":\"Economic Geology\",\"volume\":\"10 1\",\"pages\":\"1345-1381\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"1960-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"151\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Economic Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.2113/GSECONGEO.55.7.1345\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Economic Geology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2113/GSECONGEO.55.7.1345","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
The Fe-As-S system--Phase relations and applications
A basis for the interpretation of Fe-As-S mineral assemblages in ores has been provided through systematic collection of physical and chemical data in the synthetic system Fe-As-S. Most interesting is the temperature limitation of 491 degrees C. for coexistence of the commonly observed mineral pair pyrite-arsenopyrite. The As:S ratio in arsenopyrite and/or loellingite may add another to the group of geothermometry techniques now available for ore studies. The observation that Au diffuses rapidly through fine-grained arsenopyrite at temperatures above 600 degrees C. and confining pressures up to 2,070 bars provides some insight into the relations of Au and arsenopyrite in many ores. Equilibrium phase relations in the Fe-As-S system were determined at 600 degrees C., and changes in assemblages were studied in the 400 degrees to 800 degrees C. temperature range. At 600 degrees C. a very narrow liquid field lies along the As-S side of the ternary system between 100 and 22.8 + or - 0.2 weight percent S. Tie-lines connect various parts of this liquid field to pyrite, to pyrrhotite, and to arsenopyrite. At this temperature there are also tie-lines between pyrrhotite-arsenopyrite, arsenopyrite-As, arsenopyrite-toellingite, pyrrhotite-loellingite, pyrrhotite-FeAs, and FeS-Fe 2 As. At temperatures above 600 degrees C. synthetic arsenopyrite has the approximate composition FeAs (sub 1.1) S (sub 0.9) . Compositions that are S rich relative to ideal FeAsS become stable at lower temperatures and under high confining pressures. Changes in the phase assemblages at various temperatures are governed by the reactions: pyrite + arsenopyrite pyrrhotite + liquid or vapor, arsenopyrite + As loellingite + liquid or vapor, and arsenopyrite pyrrhotite + loellingite + liquid or vapor. The invariant temperature at which both liquid and vapor are present in these assemblages are 491 degrees + or - 12 degrees C., 688 degrees + or - 3 degrees C., and 702 degrees + or - 3DGC., respectively. The first reaction was investigated at confining pressures up to 2,070 bars, at which pressure pyrite and arsenopyrite can coexist up to 528 degrees + or - 10 degrees C.
期刊介绍:
The journal, now published semi-quarterly, was first published in 1905 by the Economic Geology Publishing Company (PUBCO), a not-for-profit company established for the purpose of publishing a periodical devoted to economic geology. On the founding of SEG in 1920, a cooperative arrangement between PUBCO and SEG made the journal the official organ of the Society, and PUBCO agreed to carry the Society''s name on the front cover under the heading "Bulletin of the Society of Economic Geologists". PUBCO and SEG continued to operate as cooperating but separate entities until 2001, when the Board of Directors of PUBCO and the Council of SEG, by unanimous consent, approved a formal agreement of merger. The former activities of the PUBCO Board of Directors are now carried out by a Publications Board, a new self-governing unit within SEG.