{"title":"单视图三维重建的相对体积约束","authors":"Eno Töppe, C. Nieuwenhuis, D. Cremers","doi":"10.1109/CVPR.2013.30","DOIUrl":null,"url":null,"abstract":"We introduce the concept of relative volume constraints in order to account for insufficient information in the reconstruction of 3D objects from a single image. The key idea is to formulate a variational reconstruction approach with shape priors in form of relative depth profiles or volume ratios relating object parts. Such shape priors can easily be derived either from a user sketch or from the object's shading profile in the image. They can handle textured or shadowed object regions by propagating information. We propose a convex relaxation of the constrained optimization problem which can be solved optimally in a few seconds on graphics hardware. In contrast to existing single view reconstruction algorithms, the proposed algorithm provides substantially more flexibility to recover shape details such as self-occlusions, dents and holes, which are not visible in the object silhouette.","PeriodicalId":6343,"journal":{"name":"2013 IEEE Conference on Computer Vision and Pattern Recognition","volume":"372 1","pages":"177-184"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Relative Volume Constraints for Single View 3D Reconstruction\",\"authors\":\"Eno Töppe, C. Nieuwenhuis, D. Cremers\",\"doi\":\"10.1109/CVPR.2013.30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce the concept of relative volume constraints in order to account for insufficient information in the reconstruction of 3D objects from a single image. The key idea is to formulate a variational reconstruction approach with shape priors in form of relative depth profiles or volume ratios relating object parts. Such shape priors can easily be derived either from a user sketch or from the object's shading profile in the image. They can handle textured or shadowed object regions by propagating information. We propose a convex relaxation of the constrained optimization problem which can be solved optimally in a few seconds on graphics hardware. In contrast to existing single view reconstruction algorithms, the proposed algorithm provides substantially more flexibility to recover shape details such as self-occlusions, dents and holes, which are not visible in the object silhouette.\",\"PeriodicalId\":6343,\"journal\":{\"name\":\"2013 IEEE Conference on Computer Vision and Pattern Recognition\",\"volume\":\"372 1\",\"pages\":\"177-184\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2013.30\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2013.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Relative Volume Constraints for Single View 3D Reconstruction
We introduce the concept of relative volume constraints in order to account for insufficient information in the reconstruction of 3D objects from a single image. The key idea is to formulate a variational reconstruction approach with shape priors in form of relative depth profiles or volume ratios relating object parts. Such shape priors can easily be derived either from a user sketch or from the object's shading profile in the image. They can handle textured or shadowed object regions by propagating information. We propose a convex relaxation of the constrained optimization problem which can be solved optimally in a few seconds on graphics hardware. In contrast to existing single view reconstruction algorithms, the proposed algorithm provides substantially more flexibility to recover shape details such as self-occlusions, dents and holes, which are not visible in the object silhouette.